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ABSTRACT

xviii

Lightweight, slender manipulators offer faster

response and/or greater workspace range for the same size

actuators than traditional manipulators. Lightweight

construction of manipulator links results in increased

structural flexibility. The increased flexibility must be

considered in the design

account for the dynamic

deflections. This thesis

of controlsystems to properly

flexible vibrations and static

experimentally investigates real-

a series

respect to

selection.

time control of the flexible manipulator vibrations.

Models intended for real-time control of distributed

parameter systems such as flexible manipulators rely on

modal approximation schemes. A linear model based on the

application of Lagrangian dynamics to a rigid body mode and

of separable flexible modes is examined with

model order .requirements, and modal candidate

Balanced realizations

flexible model to obtain an

for a selected model.

Describing the flexible deflections as a linear

combination of modes results in measurements of beam state,

(position, strain etc.),

several modes. To realize

theory, in particular to

is applied to the linear

estimate of appropriate order

which yield information about

the potential of linear systems

implement full state feedback,



ix

knowledge of each state must be available. Reconstruction of

the time varying modal amplitudes form strain measurements

is examined. Reduced order observers are utilized to obtain

estimates of the modal velocities, from the reconstructed

modal amplitudes. State estimation is also accomplished by

State feedback control laws are implemented based upon

linear quadratic regulator design. Specification of the

closed loop poles in

obtained by inclusion of

the manipulator model.

the regulator design process is

aprescribed degree of stability in
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CHAPTERI

INTRODUCTION

This thesis presents

into the control of

investigation focuses on

the results of an investigation

a flexible manipulator. The

real time control experiments

examining dynamic models, and control strategies proposed by

past researchers. Analytical work performed was primarily

conducted to adapt the models and controllers to the

experimental system, and resolve discrepancies between the

experimental results, and expected results.

Documentation is provided for the experimental

hardware utilized in the experiment, as well as the software

generated to implement the controllers. Some tutorial is

given in the appendices to bridge the gap between the

various topics involved in this work.

i.i Organization and Readers Guide

The purpose of this section is to present the

reasoning behind the layout of the thesis, and provide a

short topical description of each section as an aid in

finding material of interest to specific readers.

The main body of the work focuses on presenting

experimental observations, and comparison of these results

to analytical predictions. The appendices contain long
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derivations, programs ,

informative, but are not

thesis effort.

The first

discusses the

etc. which

central to

chapter introduces

organization, and

may be useful and

the objectives of the

the thesis topic,

identifies pertinent

litm_m_,,_ mh_ _:._o_ .... I,,_ _.. ;^:4.4-- the specific

problem considered for this investigation.

The second chapter, "Experimental Apparatus", briefly

identifies the major components of the experimental system,

and provides graphic representation of their interplay.

Detail information on the hardware components, and

electrical connections are identified in Appendix E.

The third chapter, "Verification of the Linear Dynamic

Model", roughly outlines the process

dynamic model used in the controller

Experimental observations conducted to

for generating the

design algorithms.

evaluate the model

are presented and compared to digital simulation. A detail

account of the modelling process is contained in Appendix A.

The fourth chapter discusses analytical estimation of

required model order. The method of balanced realizations is

introduced and applied to the model. This provides

quantitative substance to the qualitative results of chapter

.

The fifth chapter,

Flexible Variables",

flexible variables, and

"Measurement and Reconstruction of

discusses reconstruction of the

selection of locations for strain
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measurement from which the variables are obtained.

The sixth chapter, "Reduced Order Observers", reviews

the concept of state observation, and the fundamentals of

reduced order observers. Application of reduced order

observers to the estimation of modal velocities is discussed

including specification of the measurement update gain to

obtain robust implementation. Pole placement of the observer

poles is evaluated experimentally.

Chapter seven, "Optimal Regulator", addresses the

performance of a deterministic optimal regulator design for

the flexible manipulator. Various degrees of stability are

prescribed in the design process, and the resultant

performance recorded. Models with with one and two modes are

examined.

Chapter eight, "Kalman Filter", discusses the

experimental determination of measurement noise, and

presents the closed loop performance based on the Kalman

Filter estimates of the states. The amount of plant noise is

varied to obtain a robust filter.

Chapter nine discusses several additional results, and

observations which had significant impact on the experiment,

but do not fit in the other sections.

Chapter ten summarizes the major contributions and

results of this work, and identifies future work.

Appendix A gives a detailed account of the dynamic

model generation.
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Appendix B derives the frequency determinant for a

Bernoulli-Euler beam.

Appendix C generates the necessary equations, and

solution technique for the Optimal Quadratic Regulator.

Appendix D embraces the Kalman filter origins.

Appendix E gives manufacturers datas _m11_ from

tests conducted to verify component performance, and

electrical connection diagrams.

Appendix F documents the software routines generated

for the micro-processor controller.

1.2 Background

A large body of analytical research applicable to the

modeling and control of flexible manipulators has

accumulated over the last two decades. The following

paragraphs briefly chronicle the most pertinent efforts, and

highlight major contributions.

All physical systems can be described as continuous in

space, and/or time, however,

described using simpler

responsive, accurate

distributed nature of

dynamic model.

The dynamics of

investigation for many

classified the general

control

the mass

many systems are adequately

lumped models. To provide

of flexible manipulators the

needs be included in the

distributed systems has been under

years, and F.T. Brown [If], 1964,

character of these systems, and at



the same time drew physical analogies between the

distributed parameter systems of several fields. Shortly

afterwards, this material started appearing in aerospace

literature with respect to stabilizing flexible vehicles.

For example, work by R.E. Andeen [I2], 1964, applied these

ideas to the stabilization of rockets.

Modal control of a distributed parameter systems was

discussed as early as 1966 by Lasso [I3], and again by Lasso

and Gould [I4], 1966. Lasso and Gould described control law

development using classical techniques, and discussed

determination of modal quantities from measurements. The

modal analysis technique, discussed by Lasso and Gould, is

similar in concept to the reconstruction concept used for

this study. Wykes, and Mori [I5], 1966, reported on the

applicability of this approach to the control of flexible

modes in aircraft.

Vaughan [I6], 1968, applied wave propagation concepts

to the control of bending vibrations. Vaughan was interested

in determining impedance matches for

attachment. Vaughan obtained transfer

the dynamic character of a flexible

a passive endpoint

matrices to describe

beam. The transfer

matrices were similar to those latter developed by Book [I9]

to describe the dynamics of flexible manipulators.

Komkov [I7] discussed optimal control of a transverse

beam oscillations in 1968. Mirro [I8], 1972, was perhaps

the first to discuss the feedback control of a flexible
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manipulator. Mirro examined the usefulness of optimal

regulators as applied to this problem. This was followed by

Book [I9], 1974, who examined the usefulness of transfer

matrices in the modeling and control of flexible

manipulators. In addition, Book drew conclusions about the

response of flexible

and discussed design

1974, examined the

manipulators to feedback controllers,

of the flexible member. Nero [II0],

application of modal analysis and

Lagrangian formulation of the dynamic system to the analysis

and control of flexible manipulators.

Schaechter [Ill], 1974, examined the control of

flexible vibrations aimed at large scale space structures,

and included some experimental investigations. The apparatus

was a free hanging truss structure, with actuation suitable

for space applications. The paper served to document the

apparatus, associated hardware, and modeling difficulties.

Martin [I12], 1978, analytically investigated the

control of flexible mechanical

considered the performance of

collocated controllers. This work

systems, and specifically

both collocated and non-

was aimed at large space

structures, and paralleled the work of both Mirro, and Book.

Balas [I13], 1978, discussed

structures and focused on the

and implementations based on

concepts intended for flexible space structure

usually consider multiple actuators distributed

modal control of large space

impact of controller designs

truncated models. The control

control

over the
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lengths of open truss structures to control the undesired

vibrations.

Book, Majette, and Ma [I14], 1979, continued to

develop frequency domain techniques for the control and

analysis of serial manipulators with multiple flexible

links. Hughes [I15], 1979, developed complete, general

dynamic relationships for flexible chain systems applicable

to flexible manipulators. Balas [I16], 1980, continued to

contribute to the field of space structure control with an

investigation of modeling based on finite element

techniques. The model, although suitable for small amplitude

vibrations about an equilibrium configuration, did not

properly account for

manipulator applications.

Fujii [I17], 1980,

distributed parameter

rapid gross motions typical of

developed functional observers for

systems in recognition of the

computational requirements of state observers. Truckenbrodt

[I18], 1981, concentrated on modelling a fixed base flexible

manipulator that was similar to Nero's earlier work.

Truckenbrodt, additionally compared the performance of the

model to a simple test device and found reasonable agreement

for the frequencies of the first four vibratory modes.

Balas [I19], 1982, discussed a need for more practical

control concepts satisfying constraints which arise in

implementation. Sunada, and Dubowsky [I20], 1982, developed

finite elements for flexible manipulators which incorporated
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the dynamic effects of

applications.

Cannon and

characteristics of a

truss construction,

gross motions encountered in robotic

Schmitz [I21], 1983, discussed

very flexible manipulator with open

and in further work [I22], 1985,

investigated end-point position control. The end-point

position was measured by an optical sensor external to the

manipulator system. Zalucky and Hardt [123], 1984, examine

compensation for static deflections occuring in flexible

members using an optical sensor to measure deflections.

Turic and Midha [I24], 1984, obtain generalized

equations of motion for elastic systems using finite

elements. Turic, Midha, and Bosnik [I25], experimentally

examine the ability of

previous reference to

linkage. Weeks, [I26],

the finite element technique of the

predict the motion of a four bar

presents solution of the boundary

value problem describing control of flexible structures by

use of integral transforms. Weeks recognized that for real-

time implementation the Greens functions could be

approximated by expansions of selected eigenfunctions. Bodde

n and Junkins [I27], 1984, discussed optimization of the

eigenvalues for structural controllers. Junkins [I28], 1985,

continued to examine

placement problem using

design.

Meirovitch

the flexible structure eigenvalue

optimal linear quadratic regulator

and Baruh [I29], 1984, consider the
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application of modal filters

requirements in control of

Sangveraphunsiri [I30], 1984,

to reduce model order

flexible structures.

applied optimal control

methods to obtain controller designs for a single link

flexible manipulator. Deterministic and stochastic steady-

State regulators, as well as time optimal bang-bang

controllers were simulated with linear, and nonlinear

models. Major and Shain [I31], 1984, consider the control of

a flexible truss suitable for

to discuss experiments on a

[I32].

space applications, and go on

single truss section in 1985

Book [I33], 1984, presented the "Bracing Strategy" to

achieve higher effective stiffness for flexible manipulators

in performance of certain robotic tasks. Lane and Dickerson

[I34], 1984, considered the application of visco-elastic

damping materials to achieve passive control of flexible

vibrations. Alberts et. al., [I35], experimentally evaluated

passive damping treatments applied to a single link flexible

manipulator. Major and Maples

control of manipulators with

Naganathan and Soni [I37],

[I36], 1985, considered force

flexible structural elements.

1986, examine non-linear

kinematic formulations of flexible manipulators using finite

element techniques.
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i. 3 Problem Statement

The following section defines the specific physical

configuration, and problem

A flexible arm limited to

via rotation about a fixed

addressed in this investigation.

motions in the horizontal plane

joint is depicted in figure i-i.

The arm is constructed from a single continuous beam. The

only control actuation available to the system is a torque

delivered at the single rotational joint. The following

measurements of the state of the system are available:

I. Joint rotation angle

2. Joint rotational velocity

3. Strain at least two locations

A control torque u, is determined that will rotate the

flexible beam from one arbitrary orientation to another

specifiable orientation quickly and accurately. This

function utilizes the measurements to provide information on

the state of the system.

Since the proposed investigation relies heavily on

experimental investigation, the performance of physical

components add complexity to the

responsiveness of the torque source,

friction of the joint, and measurement

of the factors impacting the problem.

problem. Linearity, and

coulomb and viscous

noise are but a few
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1.4 Contribution

The major contributions of

evaluation of truncated models

flexible manipulators. Chapter

of mode selection and model

method for apriori estimation

this thesis lies in the

for use in the control of

3 identifies the importance

order. Chapter 4 proposes a

of the required model order.

Chapter 5 presents a measurement scheme for the time varying

modal variables. Chapter 6 develops a reduced order observer

for modal velocities. Chapters 7, and 8 evaluate the

performance of controllers based on these models. Chapter 9

contains additional information gleaned from the series of

experiments. All this information forms the foundation for

further work in controlling distributed parameter systems.

O

• / // R,GIo.eoo',"ROTAT,ON

p POS,T,ONvEc'roR..,L,j _/_/./
FLEXIBLE DISPLACEMENT

REFERENCE FRAME =

Figure l-l. Single Link Manipulator
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CHAPTERII

EXPERIMENTAL APPARATUS

This section of the thesis introduces the experimental

manipulator system. The graphic configuration of the major

subsystems and their major functions are identified in this

section. This is done to establish a point of reference for

the following chapters, and to set the physical scale of the

experiment. Manufacturers,

measurements made to assure

key components, and detail

specifications, experimental

the performance parameters of

diagrams identifying the actual

electrical connections are identified in Appendix E.

The experimental hardware is

major subsystems:

The

sixteen bit micro-processor

mass storage, and sensor

control.

The manipulator subsystem

link, torque motor, payload, and

scale for the experiment. The

separated into three

• Micro-Processor System

• Manipulator

• Signal Conditioning

Figure 2-1 graphically depicts

micro-processor

the system hardware.

subsystem consists of a high speed

with floating point hardware,

I/O for data acquisition and

consists of the flexible

sensors. The link sets the

arm is a four foot aluminum

B
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beam oriented so that axis of increased flexibility is in

the horizontal plane. Four feet is longer than lengths of

many "pick and place" industrial robots, yet significantly

shorter than proposed scales for flexible manipulators [IIl-

2]. A commutated DC torque motor provides the motive power

for the link.

The payload is provisioned for the addition of weights

to allow investigation of the systems sensitivity to payload

mass. Several sensors are attached to the flexible

manipulator in order to provide information about the state

of the link. A potentiometer is mounted to the top of the

actuator shaft to measure the rotation of the joint. A

@

SIGNAL CONDITIONING

Filters-

ololololololo
OlOlOlolOlOlo Strain Gage
°l°l°l°l°I°l° Bridges

_Amplifiers

Power
Amplifier"

.

R

+1
_--_I Series/l/

-' _

I

.i

CONTROL PROCESSOR

Figure 2-1. Graphic Configuration of

the Experimental Apparatus

@
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tachometer located under the motor housing is used to

measure the angular velocity of the joint. Strain gages,

mounted at the base and midpoint of the link, provide

measurements of the beam deflections.

The signal conditioning subsystem provides interface

electronics for the strain gages, angle sensor, tachometer,

and torque motor. The strain gages require bridge circuitry

and amplification. The angle sensor and tachometer require

buffer amplifiers to isolate them from the line loads and

provide analog scaling. Four band pass filters are also

provided. The torque motor is driven by a large DC servo-

amplifier configured to provide currents proportional to the

input voltage.
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III

VERIFICATION OF THE LINEAR DYNAMIC MODEL

The material in this section

the linear model which formed the

investigation into the control of

of the thesis describes

basis for most of this

flexible manipulators.

The initial sections discuss the modeling process, and steps

taken to verify system parameter_ and algorithm

implementation. The latter section compares simulations of

the model to experimental measurements.

3.1 Model Generation

This sub-section describes the formation of a linear

state space model for the flexible manipulator. The process

for forming the model will be outlined in this section; a

detailed description is contained in appendix A. The first

step of the process is to describe the position of every

pointalong the flexible manipulator. A linear combination

of vibratory modes to

rigid body motion of

manipulator with a

describe flexible deflections, and a

the center of mass is selected. A

rigid body rotation and flexible

"clamped-mass" mode is depicted in figure 3-1.

The flexible deflections are described by an infinite

series of separable modes. Separability in this instance

refers to describing the flexible deflections as a series of
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assumed modes [IIIl]

each of which is a

function of a spatial variable,

time. This is noted as:

w(x,t)= _i(x)qi(t)

which are products of two functions,

function of a single variable: one a

and the other a function of

, for i=l,2...n (3.1)

This separability is important in later phases when the

model is formed in terms of time varying variables only.

Next the kinetic and potential energies are derived.

The distributed character of the flexible manipulator is

taken into account via integral expressions over the mass of

the entire system in forming the energy expressions. The

integral for calculating the kinetic energy, KE, has the

? J _4 X

@

_) ' REFERENCE F'RAM E -

Figure 3-1. Flexible Manipulator
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following form;

= } I (3.2)

where R, the absolute velocity vector, and mass, range over

the entire system. The potential energy, PE, of the system

is stored in the flexible modes and can be ae_%buted to

"modal stiffnesses", Ki, which are evaluated by integrals

over the length as shown in equation A.12. Lagrange's

equations of motion can be formed from the energies;

I_EI _PE = Qi (3.3)

dtl< I _i

where the _i are the coordinates, and Qi are the generalized

work terms associated with each coordinate. Turning the

computational crank on the various differentials and

integrals as carried out in appendix A results in a coupled

set of second order dynamic equations with familiar form;

[M] z + [K]z = [Q] (3.4)

z = [%,ql(t),q2(t), .... ,qn(t)] (3.5)

M is a mass matrix, K represents stiffness, and Q the input.

The dynamic equations are easily organized into a state-

space model as shown in equation (3.6). The motor torque at

the joint, and

related to the rotation

Examination of the form

result that the coupling

the generalized

of the

of the

between

work terms, Qi' are then

joint with each variable.

model reveals the expected

the modes, and the rigid
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body motion occurs from inertial terms of the mass matrix.

Equation (3.6) depicts a 2(n+l) order linear model

where n is the number of included modes. Non-linear terms

arise from the evaluation of equation (3.2) for the kinetic

energy, and the specific assumptions employed to obtain a

model containing only linear terms is discussed in Appendix

A.

8

ql

oo

8

o,

ql
oo

q2

0 I

M-1K 0

%

ql

q2

+

0

M-IQ

iui (3.6)

3.2 Mode Selection and Frequency Determinant

The remaining task in generating a trial model is the

selection of the flexible modes to be used in forming the

constant mass and stiffness matrices•

The path chosen in

functions as candidates

related problems. These

selected "clamped-mass",

this work is to select admissible

which are solutions to closely

solutions are eigenfunctions for

and "pinned-mass" boundary value
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problems. Clamped describes

joint is fixed against

with motor inertia free

condition of the payload at

admissible functions will

equation, the essential

and the natural boundary

problem.

Appendix B describes

differential equation for a

a boundary condition where the

rotation, pinned describes a joint

to rotate, and mass describes the

the other beam boundary. The

then satisfy the differential

or geometric boundary conditions,

conditions of the free vibration

the development of the

Bernoulli-Euler beam and the

solution of selected boundary value problems. The problem is

formulated in terms of a frequency determinant for the

determination of the eigenfunctions and the associated

frequencies.

The experimental apparatus introduced in Chapter 2 was

used to examine the model's performance. Table 3-1

identifies the important parameters of the beam which were

used as inputs to the modeling process.

Table 3-1. System Parameters

Flexible Beam -

Material

Form

Length

Moment of Inertia

EI Product

- Aluminum 6061-T6

- Rectangular 3/4 x 3/16in

- 48 in

- 4.12E-4 in 2

- 4120 lbf-in 4
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3.3 Parameter and Program Verification

This section describes experiments conducted to verify

system parameters and program implementation of the model

generation process. Initially the frequencies determined via

the Bernoulli-Euler beam equations with clamped-mass, and

pinned-mass boundary conditions are compared to measured

eigenvalues of the beam. This examines beam length, modulus,

and density parameters, as

chosen boundary conditions.

Figure 3-2 shows a

random torques input by the

well as the suitability of the

measured transfer function from

motor to strain at the base of

the beam. The peaks correspond to "clamped-mass" modes, as

Freq.

Response

Db

2.08Hz

41.}8 81.1@HZ

L0.01Hz 133.45Hz 70._6HZ

0.0
I I I t I I I I I I

H= i00.

Figure 3-2. Frequency Response
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the clamped boundary condition

maximum moments at the base of

associated with "pinned-mass"

results in modes having

the beam. The valleys are

modes, as this boundary

condition results in modes which have small moments which

rotate the motor inertia. Martin [III2] discusses

measurement zeros which occur in flexible structures.

The vibratory modes were additionally calculated by

the frequency determinant described in Appendix B. Table 3-2

compares the measured modal

using the Bernoulli-Euler

Bernoulli-Euler formulation

frequencies to those computed

Beam. The application of the

to the "clamped mass" case

agrees very well with the measured frequencies, however, the

"pinned-mass" conditions were not as accurate.

The poorer agreement for the pinned case is attributed

to the friction found

difficult condition to

effect for the small

tests.

in the joint hardware; this is a

model and may have a significant

amplitude motions used during the

Table 3-2. Comparison of Modal Frequencies(Hz)

Clamped-Mass

Mode Measured Calculated

1 2.08 2.096

2 13.92 13.989

3 41.38 41.524

4 81.18 81.225

5 136.352

Pinned-Mass

Measured

i0.01

33.45

70.56

Calculated

9.732

31.608

62.683

148.768

216.048
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The next step checked the model generation algorithm.

Normalization of the modal masses allows the checking of the

computations by examining the diagonal components of the

stiffness matrix. The stiffnesses should be the square of

the modal frequencies input to the process.

The algorithm was checked for

modes and the pinned-mass modes.

comparison of the modal frequencies

both the clamped-mass

Table 3-3 presents a

input to the modelling

process. The results are very good, however it was

necessary to use higher precision computations for the

higher modes.

Table 3-3. Comparison of Frequencies Determined

by Stiffness Computations

Clamped-mass Pinned-Mass

Input Stiffness I/2 Input Stiffness

2.096 Hz 2.096 9.732 Hz 9.732

13.989 13.989 31.608 31.608

40.552 40.524 62.683 62.683

81.225 81.225 148.768 148.768

136.352 136.344 216.048 214.621

1/2

3.4 Dynamic Response Comparison

The previous section provides confidence that the beam

parameters have been properly identified and modeled by the

Bernoulli-Euler beam. The computational procedure has
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additionally been checked. The

the model can now be investigated:

The

major questions concerning

Choosing the Modal Candidates

Required Model Order

Is a Linear Model of the Coupling Adequate

following paragraphs describe simulations and

experiments conducted to gain insight into the answer to

these questions. The simplest and best understood _ontroller

for flexible arms is

control system where

located at the same

a collocated controller, that is, a

the measurement and actuation is

point. A collocated controller was

implemented for the experimental system which applied a

position gain to joint angle measurements, and a rate gain

to angular velocity measurements.

The position gain was selected to provide the rigid

body mode with a characteristic time of one second. The rate

gain was selected to provide a damping ratio of 0.7. Higher

gains could be selected which stress the impact of

flexibility on the control strategy, however the chosen

gains -provide a good starting point well within the

operating parameters of the system.

Figure 3-3 displays the measured response of the

experimental system to a step change in desired joint angle.

Strain measurements presented

in the controller, provide an

modal amplitudes.

in the figure, while not used

indication of the relative
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The dynamic model

the step angle change.

damping ratios ranging

was discretized, and simulated for

Small amounts of damping, (typically

from .007-.010, based on transfer

function measurements using an impulse hammer as the input

and strain at the base as the output [III3]) were introduced

into the m_l _ the _i _v_ _i _ _ _;_ _ ^._ _..

hysteretic joint friction was modeled as coulomb friction

[III4] and included in the digital simulation. Inclusion of

modal damping and hysteresis in the simulations improved the

agreement of the models especially in the time interval

after the large initial transients had occurred.

Figure 3-4 shows the results for a model implemented

with five clamped-mass modes, while figure 3-5 presents a

model using two clamped-mass, modes. The last case simulated

used five pinned-mass modes as inputs to the modeling

process. This is presented in figure 3-6•

The simulations based upon clamped-mass modes agree

the best with measured responses• Surprisingly the model

implemented with only two clamped-mass modes agrees almost

as well if not better

poorer agreement of the

to poor estimation of

than the higher order model. The

higher order model is probably due

the damping by use of the impulse

hammer measurements. Additional damping in the higher modes

from the joint is likely when the joint is in motion. Should

the actual manipulator exhibit the higher amplitude
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Figure 3-6. Simulated Response, Five Pinned-Mass Modes.
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vibrations in the higher frequencies,

4, larger models including the

be required. This presentation

better determination of damping

provide better results.

portion of the response

few as two modes.

as shown in figure 3-

higher flexible modes would

maybe somewhat misleading as

for the higher modes could

It is apparent that a dominant

is adequately characterized by as

3.5 Summary

A modelling process to generate a linear model for use

in controlling flexible manipulators was presented, and

compared to experimental measurements for a position, and

rate feedback controller. The model agreed favorably with

the measured response for a selection of clamped-mass

assumed modes. The dominant parts of the transient response

were characterized by

flexible modes.

The selection

inclusion of as few as two assumed

of appropriate assumed modes must

consider the feedback law, as the applied torque dominates

the boundary condition at the base of the beam. Clamped-mass

modes yielded good results

controller, however this may

sophisticated controllers.

for the simple collocated

not prove true for more
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CHAPTERIV

MODEL ORDER REDUCTION

Truncation of the modal

a model suitable for

initial estimates of

two flexible modes

implementation

computational

was targeted

series is required to achieve

in real-time. Based on

speed a model treating

for this study. While

verifying the linearized model, as discussed in the earlier

chapter, the two mode model was found to characterize the

major portion of the response. This process was completely

arbitrary, and satisfactory performance of the controller

was in no way guaranteed. It was therefore desirable to seek

an analytical means to

especially when looking

systems.

Professor Dorsey,

estimate the required model order,

forward to research on multi-link

Electrical Engineering Dept./

Georgia Tech., suggested the use of balanced realizations as

a method for providing the

realizations is based upon

linear systems [IVl]. This

similarity of the model

familiar with in power

suggestion was

used in this work

systems research.

model order estimate. Balanced

singular value decomposition of

based upon the

to one he was

The linearized

version of a power system model is shown in figure 4-1. The

states are the 46 variation in angles, and _ variation in

speeds for the generators. M represents the inertial matrix
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of the generators, y represents damping. T represents the

change in electrical power with respect to the angle

variations _6, and L depicts the change in electrical power

with respect to the load power.The linearized model for the

manipulator is repeated in figure 4-2. The structural

similarities are readily

_2

_2

A_ 3

0 I

M-1T -yI

461

A62

_6 3

Aw 1

_2

A_ 3

+

0 0

M-I M-1L

lul

Figure 4-1. Power System Model.
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apparent between the two types of systems. Additionally, Dr.

Dorsey had robust software machinery evaluating the power

system models. Troullinos, and Dorsey [IV2] wrote an

introductory paper on model order estimation with this

method, and that material is presented next to familiarize

readers with the method before discussing its application to

the flexible manipulator.

o.

e
..

ql
•- M-IK
q2

0

8

ql

q2

q2

+

0

M-IQ

lul

Figure 4-2. Manipulator Model.

4.1 Order Reduction of Static Systems

The basic motivation for balancing linear dynamic

systems is rooted in linear algebra. Given the system

y = Tx (4.1)

where T is an n x m matrix,

interpretation of the potential

an intuitive, geometric

redundancy of the system's
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variables can be achieved using spaces R(T), R(T') and their

respective orthogonal complements Ker(T'), and Ker(T).

Ker(T) is the nullspace

vectors x such that Tx=0.

4-3 summarizes the

subspaces.

Assume that m<n. Any

represented as the sum of

Xk, on Ker(T). That is x

of T, the subspace spanned by all

T' is the transpose of T. Figure

relationships between these four

m-dimensional vector x can be

its projection x r, on R(T') and

= x r + x k. Similarly any n-

dimensional vector y can be represented as y= yr+Yk , the sum

of its projections on R(T) and Ker(T'). Then Yr = Tx = T(x r

+ Xk) = Tx r + 0 = Tx r. Thus, effectively, T can be thought

of as an invertible transformation from R(T') to R(T). The

inverse transformation that takes Tx back to x is called the

psuedo-inverse [IV3].

Figure 4-3. Relationship Between Subspaces.
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The subspace decomposition described above provides an

elegant and intuitive picture of linear transformations. The

necessary complement to this theoretical picture is a robust

computational method of decomposing the matrix T. Every n x

m matrix T can be factored as T = UZV' with U an n x n

orthogonal matrix, V an m x m orthogonal matrix and Z an n x

m matrix that has the special form

_2 •

_m

(4.2)

where the ui are the nonnegative square roots of the

eigenvalue of the matrix T'T. If T is of maximum rank, then

all the u's will be non-zero. If the rank of T is r<m, then

only the first r diagonal entries will be nonzero, in which

case T can be written as

i,0iiv,lT = [Ur Uk]

0 0 V k

(4.3)

and Ur,Uk,Vr, and V k are

R(T), Ker(T'), R(T), and

the crucial property that if

= T + AT, then the singular

to the singular values of T.

T is of r<m then the decomposition of the

where Zr = diag(ul,S2,..-,_r)

orthogonal matrices which span

Ker(T), respectively.

The singular values have

T is perturbed slightly to T_

values of T_ will be "close"

Thus if
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transformation TA would yield

!

TA = [UrA UkA][ 7rA 0 ] [ VrA]
0 _kn VknJ

(4.4)

where the singular values of

the singular values of
rA"

good approximation of the

ZkA would be small compared to

Thus T = UrAZrAV_A would be a

original transformation T =

UrZrV_. Even in the case where T is known exactly, if the

singular values can be segregated into two groups where the

members of one group are much smaller than the members of

the other, then the matrix UrAZrAVIA may still be a useful

approximation to the matrix UrZrV i. It is this latter point

of view that is exploited in the next section.

4.2 Sinqular Value Decomposition Applied to Dynamic Systems

Given the linear time invariant system

&(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(4.5)

(4.6)

One is the

X(to) , to a

two transformations are of interest.

transformation Tc(tl) from an initial state,

subsequent state, X(tl) , under the influence of an input

u(t). The other is the transformation T0(tl) from an initial

state x(t 0) to a subsequent output Y(tl) , with no input. The

first transformation provides information about the

controllability of the system, while the second,
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information about the observability of the system. If the

system has uncontrollable or unobservable states then the

state space can in a sense be interpreted as degenerate, or

not of full rank.

The linearized model

assumed to be controllable

for the flexible manipulator is

and observable; this was checked

in the computations. What is of interest are states that are

nearly uncontrollable or unobservable. As in the static case

these estimates can be obtained

analysis for the system [IV4].

transformation from a given initial

with input u(t) to x(t I) is described by [IV5];

x(t I) = eArl x 0 + (tl-T) Bu(T)d_ (4.7)

For the special case where x(t 0) = 0,

where u is a vector of impulse magnitudes,

At 1

x(t I) = e Bu

It can be shown [IV6] that R[Tc(tl)]

Wc(t I) = eATBB,eA'_u(_)dT

_0

Similarily for the unforced case

At 1

y(t I) = Ce x 0

using singular value

With tO = 0, the

condition x(t 0) = x 0,

and u(t) = 6(t)_,

= R[Wc(tl)]

(4.8)

where

(4.9)

(4.10)
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Thus Ker[T0(tl)] = Ker[W0(tl)] where

Wo(t 1) = [tleA'Tc,ceATd_

JO

(4.11)

Wc(t I) and W0(t I) exhibit the same robustness found in the

static case [IV7]. Thus if a singular value decomposition of

Wc(t I) yields

Wc(tl) = [U 1 U2 ] 1

0 Z2 V 2J

(4.12)

where the singular values

singular values of Z2'

uncontrollable states is

argument holds for W0(tl).

of E1 are much larger than the

then the number of nearly

the dimension of Z2" A similar

One more step, that of balancing the system, is

required. The size of the singular values can be interpreted

as the "strength" of the individual states. That is, the

singular values measure the extent to which a state is

influenced by inputs and initial conditions. It can happen

that a particular state will appear strong from the

controllabilityperspective and weak from the observability

perspective. A given state may,

amplified by the B matrix and

matrix, or vice versa. Balancing

equalizing the controllability

of a state. That is,

for instance, be strongly

equally attenuated by the C

the system is a method of

and observability "ratings"

assuming that the system (eqns 4.5-6)
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is minimal, balancing is achieved by finding

transformation, x(t) = Tz(t) such that for the system

z(t) = Az(t) + Bu(t)

y(t) = cz(t)

the controllability grammian Wc(t I)

grammian W0(t I ) are identical.

controllability and observabilfty

(4.5-6) and (4.13-14) are related by

-12_ct {= • WcCtl)CT-l)

(4.13)

(4.14)

and the observability

Noting that the

grammians of equations

(4.15)

w_ctll= T w_ct1_T0 _416_

the desired transformation T can be obtained as follows. Let

w2(tl)c= Uc(tl)Z_(tl)U_(tl) (4.1v)

w_(tI) : Uoctl)Z_ctl)u6ctI) (4.1s)

be singular value decompositions of the two grammians of the

unbalanced system. Define

Hit ) = E0(tl)U0(tl)Uc(tl)Ec(tl) (4.19)

with singular value decomposition

H(tl) = UH(tl)ZH(tl)V_(t ) (4.20)

and choose

1

T = Uo(tl)Cl(tl)u_(tl)Z_(tl)_ _ (4.21)
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1

Uc(tl)Zc(tl)VH(tl)Z_(t I)

It is then a straightforward calculation to show that

1

Wc(tl)'2 = [Z_(tl)V_(tl)Zc I- (tl)U_(tl) ]

1

[Uc(tl)Zc2(tl)U'(tl)]c [Uc(tl)Zcl- (tl)VH(tl)Z_(tl)]

(4.22)

= ZH(t I) = W2(ti)

By rank ordering the

diagonal elements of

divided into two subsystems,

singular values of H(tl), i.e. the

ZH(tl), the balanced model can be

one associated with the larger

singular values and one associated with smaller singular

values as

fill[ iiz21[ 2J 22][zliI
y = cc_c2j[z_]

2

u (4.23)

(4.24)

The reduced order model is the subsystem associated with the

large singular values:

Zl = All z + BlU (4.25)

y = C 1 zI (4.26)



38

4.3 Application to Flexible Manipulator Model

Using modeling software developed for this thesis a

model was generated including one rigid mode, and nine

flexible modes. A small joint angle position gain, 50, and

velocity gain, -i0, was introduced with small amounts of

modal damping, (damping ratios of .007-.010), to insure that

all eigenvalues had negative real parts before executing the

analysis software.

To evaluate the contribution of each mode, and thus

infer the required model order, requires some measure of

performance. The selected performance index is that proposed

by Moore[IVS]. For the manipulator model with N/2 = i0

modes, one rigid and nine flexible, the singular values are

from the smallest to the largest. Then a

index of the form:

2i 1

p(i)= _=i (4.27)

2N-2 1

k=2i+l

rank ordered

performance

is evaluated for i = 1,2,..., N-2 since the singular values

occur in complex conjugate pairs. The numerator and

denominator of p(i) represent, respectively, the square root

of the sum of the squares of the singular values associated

with the aggregated and unaggregated modes. Each mode

aggregation reduces the number of singular values by two,



39

and hence at an aggregation level

manipulator model has been reduced

flexible mode.

The linear model for

of (N-4)/2, the entire

to one rigid and one

the flexible manipulator was

evaluated with the above process by Dr. Dorsey with software

he had created for analysis of power systems. The result of

the computations are presented graphically in figure 4-4,

and agree well with the qualitative results presented in

chapter3. As can be seen from figure 4-4, the curve makes a

sharp change in slope after an aggregation level of six, and

the performance level quickly rises. This indicates that

most of the model is represented by three modes, one rigid

and two flexible, at an aggregation level of (N-6)/2 or 7.

o

o
u3

x

o
c

&..

/

iii II

2 3 4 5 6 7 8 9
AggregationLevel

Figure 4-4. Aggregation Level
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CHAPTERV

MEASUREMENT AND RECONSTRUCTION OF FLEXIBLE VARIABLES

This section describes the approach used to determine

the state variables associated with flexible deflections.

The position of any single point along the beam can be

described as a combination of the rigid body motion, and

flexible deflections. The approach taken in this work is to

describe the flexible deflections by a modal series. This

means that the flexible deflection is a linear combination

of variables, and

position, or strain

modes.

To realize the potential

particular to implement full

each state must be available

then is to gain information

variable from the measurements.

any single measurement of beam state,

etc., yields information about several

of linear systems theory, in

state feedback, knowledge of

to the control law. The task

about each flexible state

5.1 Measurement and Reconstruction

Joint angles, and

measured directly as for

state feedback control of

desirable

variables.

joint rotational speeds can be

rigid manipulators, however for

manipulator flexibility it is

to make direct measurements of the modal

Three types of measurement are currently
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receiving attention for experimentally controlling

flexibility in manipulators: optical measurement of end

point position [Vl-2], optical measurement of deflection

[V3], and measurement of strain on the link [V4]. The

measurement selected for this work is strain. Strain

measurement has the following beneficial aspects:

• Isolates beam variables from rigid motions.

• No restrictions on work envelope or

positioning.

• High compatibility with harsh industrial

environments subjecting the sensors to process

sprays of oils, solvents, and dispersed solids.

• Low cost sensor and driving electronics with

simple technology base.

Additionally, the concept

applied almost directly to

deflection. Measurement zeroes

position measurements [Vl] by

the manipulator may adversely affect

reconstruction to this means of measurement.

presented here can be

optical measurements of

observed in end-point

sensors mounted external to

application of

O

5.2 Strain Relationships

The moment at any location

to the curvature of the beam:

M = EI_2w(x,t)

_x 2

The stress of the fibers

along the beam is related

(5.1)

along the surface of the beam due

O
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to bending can be determined from the moment:

= Mc (5.2)
I

The strain due to bending is then:

= _ (5.3)
E

The strain can now be given in terms of the beam deflection

w(x,t):

e(x,t) = c_2w(x,t) (5.4)

@x 2

Assumed mode representation of the flexible deflections can

be expressed by:

w(x,t) = Z@i(x)qi(t) (5.5)

The strain can then be

modes as:

represented in terms of the assumed

£(x,t) = cZqi(t)d2_i(x)

dx 2

(5.6)

Equation (5.6 ) can

contributions of each

strain at a location x = a on the beam.

_(a,t) = c[d2_l(a)ql(t) + d2_2(a)q2(t) +

dx 2 dx 2

•.. d2_n(a )qn(t)]

dx 2

be expanded to clearly show the

flexible mode to the measurement of

(5.7)

For strain measurements at several locations a, b, ...,m
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this relationship can be presented in matrix form:

g(a,t)

e(b,t)

e(m,t)

cd__ 1 (a )
dx 2

cd2_ 1 (b)

dx 2

cd2_l(m)

dx 2

cd2_2(a ) ..- cd2_n(a)

dx 2 dx 2

cd_ 2(b)... cd_ n(bl
dx 2 dx 2

:

cd2_2(m ) ... cd2_n(m )

dx 2 dx 2

ql(t)

q2(t)

q3(t)

qn (t)

(5.8)

The relationship depicted above relates the flexible

variables to the strain measurements,

as a variable transformation T -I.

and can be expressed

= T-lq (5.9)

The desired form of the transformation is to "reconstruct"

the flexible mode amplitudes from the strain measurements.

q = T_

The number of strain measurements

(5.10)

m, is practically a small

number, (2, 4 etc.), while the number of modes, n, typically

used to characterize vibration is large, (i0, 20 etc.). This

would result in a rectangular matrix, and direct inversion

to obtain the desired reconstruction matrix T would not be

possible. In the case of more measurements than modes to be

determined, a least squares weighting may be appropriate.
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Based upon previous experimental results, discussed in

chapter 3, it was decided to investigate a model based upon

two assumed modes with reconstruction accomplished from two

strain measurements. This case
-i

T . Sensor locations for this

provide independent measurement

that T exists.

results in a square matrix

case can be selected which

of the two modes assuring

5.3 Sensor Placement

The next problem to be addressed is the placement of the two

strain sensors. The' specific type of sensor, and bridge

arrangement to reduce sensitivity to temperature, axial, and

transverse stresses is discussed in appendix E.

• _ode 1

'..._ _ ''"" "-...i _ii, "" ...

_ '.. _ .. ..

o/.." "..

= -. _: ,

•_o-j - ,, Mode 3.---..." ....

3j ",, .," ..-'""
.,,,, ,, .;
c- '... ,, ... ,/

" ' Mode 2_ -"
E 4+i - "", / _ "'"
O . "; • • .;" .-"

m?7 , ...... ...

I I I !

o o.2s o.so o3s
Non'ndied_ngth(x/t)

Figure 5-1. Moment Diagram.
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The location of the sensors should be selected to

provide measurement of significant signal levels, and yet

enhance discrimination between the measured modes. Figure 5-

1 presents moment diagrams for the first three clamped-mass

modes.

All the clamped mode shapes had a peak at the end of

the beam attached to the joint. It was decided to place one

of the two sensors at the base of the beam to insure

measurement of the first mode. Further examination of the

moment d_agram shows that the second mode moment has a peak

just past the midpoint of

the third mode moment has

the beam.

the beam. Additionally, note that

a zero close to the midpoint of

It was decided to place the second set of strain gages

at the midpoint of the beam. This provides good measurement

of the second mode, yet avoids measurement of the third

flexible mode. The sign change in the second mode moment, as

opposed to the first moment should help the reconstruction

algorithm to discriminate between the modal measurements.
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@

REDUCED ORDER OBSERVERS

The main thrust of this section

application of reduced order observers

flexible robot arm. Specifically,

unmeasured modal velocities via the

is to describe the

to the control of a

estimation of the

application of a

Luenberger [VII] reduced order observer is presented.

This section begins with a brief section on estimation

of state variables with full order observers and the

associated error dynamics followed by a discussion of the

motivation for using a reduced order observers.

The general relationships for reduced order observers

is then developed including expressions for the error. The

reduced order observer is then applied to the control of a

flexible arm. Design freedom and robustness of the observers

concludes this section.

6.1 Observation of the State of a Linear System

Luenberger[VI2] is recognized as pioneering much of

the work on the observation

following derivation is a

Luenberger, Gopinath[VI3],

of linear systems, however the

compilation of the works by

and Fortmann[VI4]. Equations

(6.1-3) provide a state space description of a forced linear

system with state feedback.



47

X= AX +Bu (6.1)

y= CX, C = I

For such a system

and input history are

u = Ky

knowledge

sufficient

(6.2)

(6.3)

of the initial state x0,

for determination of the

state at any later time. However, many times the measurement

matrix C is not an identity matrix, and alternate schemes

must be utilized to realize the desired state controls.

Figure 6-1 depicts an open loop observer for estimating the

states of a linear system. The subscript m designates

J

°

X

Figure 6-1. Open Loop Observation
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6

o

modeled elements, while the subscript p refers to elements

of the actual physical plant. Unavailability of information

regarding initial states and modeling errors make open loop

observation of the state variables impractical for most

control applications. Figure 6-2 graphically depicts an

observer utilizing measurements of the plant to improve the

observation and reduce the sensitivity of the estimates of

the to modeling errors, and initial states.

For the closed loop observer of figure 6-2 the

estimated, or observed state z is described by;

= AmZ - LC(x-z) + BmU (6.4)

 --yM

Figure 6-2. Observation with Measurement Update
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and the plant state dynamics as;

= ApX - BpU (6.5)

6.1.1 Error Dynamics

Subtracting equation (6.4) from (6.5) yields and

expression for the time rate of change of the error;

x-z = ApX - AmZ - LC(x-z) + (Bp-Bm)U (6.6)

Accurate modeling of the plant dynamics and input dependence

results in a simpler form of the error expression;

where;

= (A-LC)e (6.7)

e = x - z (6.8)

Examination of this expression for the error dynamics

shows that a proper selection of the measurement gain matrix

allows an arbitrary specification of the rate at which the

error decays. Luenberger [VII] proved this to be true as

long as the system was completely observable, i.e. the pair

AC was observable. Additionally, the error dynamics

described by equation (6.7) will dominate the behavior even

when some modeling errors exist, as long as measurement gain

L provides the major contribution to the negative real parts

of the eigenvalues.
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6.1.2 Separability

The composite

following form;

LC

system can now be written in the

0A-LC ] + u
(6.9a)

for systems without feedback,

based upon the estimated states;

E 10•I;
LC A-LC-BK

and for systems with feedback

u (6.9b)

The eigenvalues of the composite system can be examined more

readily after a simple transformation

description.

T= [I 0I -I ]

Premultiplication by T

transforms the systems

and

described

(6.9b) into the following forms;

T is applied to the

(6.10)

postmultiplication by T -I

by equations (6.9a) and

+ u
A-LC z' Bj

(6.11)

O
For systems without feedback this system obviously has the

eigenvalues of both the plant, and the observer error

dynamics. For systems with feedback based upon the estimated

states;

u (6.12)
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This system possess the closed loop poles of the plant in

addition to the eigenvalues associated with the error. This

separability allows for the design of the observer as a

separate task from that of determining the state feedback.

6.2 Luenber@er Reduced order Observers

Direct measurement

angle, joint

controller. A

estimate the

advantage of reduced

and

velocity, and

reduced order

missing modal

a

reconstruction provides joint

modal amplitude data for the

observer can be designed to

velocity amplitudes. The main

order observer over full state

estimation lies in computational savings;this translates

into higher sampling frequencies during implementation.

Luenberger[VI1], and Gopinath[VI3], reviewing the

development of the equations which describe the behavior of

reduced order observers. The

can can be partitioned into

as follows;

All AI21
A21 A22

system represented by (6.1-3)

measured and unmeasured states

xlIII
x 2 B 2

lul (6.13)

c = ol (6.14)

x I are the m measure states

states to be estimated. Figure

while x 2 are the unmeasured

6-3 presents a block diagram
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of a reduced order observer which is described by;

= A22z - LC(x2-z) + A21x I + B2u (6.15)

z is the estimate of the states x 2. The error dynamics for

this system can be obtained by subtraction of equation

(6.18) describing the unmeasured states from the estimation

equation (6.15).

_2 = (A22 - LAI2)e2

e2 = x 2 - z

This estimate depends directly upon

states it is desired to determine.

measurements of x 2 can be eliminated

(6.20) with the following result;

= __(A22-LAI2)Z + Lx I - LAIIX 1 +

(6.16a)

(6.16b)

the measurement of the

The dependence on

via substitution of

(B2-LBI)U (6.17)

O

O

z _
z

Figure 6-3. Reduced Order Observer
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This result, although direct,

cause some confusion. The

more heuristic path, and

derivation process.

allows little insight and may

following derivation follows a

provides more insight into the

To accomplish this, first cull the expressions

unmeasured states from equation (6.13);

52 = A22x 2 + A21x I + B2u

The quantity,

which appears in

known input as

quantities. Next,

for the

(6.18)

51 - AllX 1 - BlU

The terms to the left side of the equal sign;

(6.20)

(6.21)

contain only measured quantities, their derivatives, and the

computed inputs u. Combining equation (6.18), and (6.20)

results in an estimation equation;

= (A22-LAI2)Z + A21x I + L(xI-AIIXl-BIU) + B2u (6.22)

Equation (6.22) provides an observation of the unmeasured

states, based on state measurements, the time derivative of

the measurements, and the inputs. Additionally, the

51 - AllX 1 - BlU = Al2X 2

velocities can be separated and reorganized as;

A21x I + B2u (6.19)

equation (6.15) can be considered as a

it contains only measure and computed

the expressions for the measured state
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measurement gain L appears to have

the error dynamics. This equation

diagram form in figure 6-4.

the ability to specify

is represented in block

6.2.1 Adaptation for Implementation

The resultant observation equation (6.22) meets the

objective of controlling the rate at which the error

converges, and eliminates the sensitivity to initial states

as the process proceeds. The equation does, however, require

the time derivative of the measured states. The time

derivative of the measured states may be the variables it, is

B_ --LB_

X X_

Z

Figure 6-4. Observer with Measurement, and Measurement

Derivatives
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Q

o

O

desired to estimate. This is indeed the case for the

flexible arm.

Figure 6-5 depicts an estimation system which does not

require knowledge of the time derivative of the state

measurements. This is accomplished by utilizing the

following substitution.

Lx I = (A22-LAI2)Lx I (6.23)

Insertion of this result into the estimation equation (6.22)

yields;

= (A22-LAI2)W + [(A21-LAI1) + (A22-LAI2)L]x (6.24)

+ (B2-LBI)u

where,

z = w + Lx I (6.25)

The motivation for this substitution is made more apparent

by noting the adjustments made to figure 6-4 in deriving the

observer shown in figure 6-5. This adjustment effectively

pushes the time derivative of the measurement through the

integration block. Gopinath[VI3] showed that the error

dynamics remain unchanged.

6.3 Application of Reduced Order Observers to Single Link

Flexible Arms

This section describes the application of the general

reduced order observer to the single flexible manipulator.
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Reconstruction of

separately, and the

quantities as inputs

velocities.

Following the

the modal amplitudes is treated

following development considers these

for the estimation of the modal

earlier partitioning scheme for

states the state vectorsmeasured, Xl, and unmeasured, x2,

for the flexible manipulator can then be organized as;

xlT = [8,ql,q2,..,qn,8] (6.26)

x2T = [ql,q2,..,q n] (6.27)

where the requirement is to form an estimate z of the modal

velocities contained in the x 2 state vector. This form is

directly compatible with the state space formulation derived

3

./

i

X_

Z

Figure 6-5. Adaptation for Implementation
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in the dynamic modeling section. A conversion of the

continuous estimation equations developed above to digital

form appropriate for implementation in a micro-processor is

accomplished by zero order hold equivalence.

6.3.1 Specification of the Measurement Gain L

The actual selection of the measurement gain matrix L

for the flexible arm system is not as direct as that implied

by a casual glance at the error dynamic equation (6.16). The

estimation equation for the modal velocities of an n mode

series is depicted in equation (6.28).

= [F]w + [L']x I + [B']u (6.28a)

F = A22-LAI2 (6.28b)

L'= (A21-LAII)+(A22-LAI2)L (6.28c)

B' = B2-LB 1 (6.28d)

z = w + Lx I (6.28e)

Where F the estimator dynamic matrfx is

nxn. Specification of estimator dynamic matrix F in equation

28a above results in n 2 equations. The measurement gain

matrix L', however, is nx(n+2) and will have n2+2n terms.

Thus, a specification of the error dynamics does not

completely determine the elements of L. This will occur

whenever more state measurements are made than there are

states to be estimated. This allows significant freedom to

the designer, and use of this freedom to improve system
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robustness will be discussed next.

@

6.4 Pole Placement and Robust Observers

The design freedom mentioned earlier can be used to

increase the robustness of the observer system. By examining

figure 6-6, a block diagram of the control implementation,

it is apparent that the

as opposed to the actual torque.

broken at node A, which would

for the motor turned off, the

for the combined observer/plant

observer utilizes commanded torque

If the depicted system is

correspond to the servo-amp

earlier discussion of poles

system does not apply. The

poles are no longer separable, and the observer displays

Plant

Computed Torque

Xl

Z

Observer

Figure 6-6. Implementation Block Diagram
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4

"closed loop" poles described by;

A22- LAI2-(LBI-B2)K 2 (6.29)

K 2 is a gain vector associated with modal velocities. These

poles are not identified in the earlier discussion for

observer design. Initial disturbances are readily available

to this system via state measurement, and unstable poles

quickly result in estimates which saturate the system. This

results in an experimental system with a "hard start"

behavior.

Problems of a similar

[VI5], and the reduction of

nature were discussed by Doyle

sensitivity to this problem was

termed an increase in robustness. The equations for the

closed loop observer poles are combined with the equations

for the observer dynamic matrix for determining the elements

of the measurement gain matrix L.

6.5 Experimental Investigation

Real-time experiments were conducted to investigate

modeling assumptions, and observer design performance. The

major issues arising during implementation result from the

truncation of the modal series made to achieve a low order

model, and hardware performance. Balas [VI6] considered the

possibility of control "spill-over" into the higher

neglected modes having deleterious effects. Also, the

proximity of the flexible poles to the imaginary axis makes

the system intolerant of unmodeled phase terms introduced by
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hardware[VI7].

6.5.1 Control Algorithm

A linear quadratic steady state regulator with a

prescribed degree of stability was designed and implemented

for a two mode model. The controller design was executed for

a sample and hold system. An optimal regulator design was

selected with gains large enough to contrast the step

response performances of the different observer dynamic

specifications. At low gains stability is hardly a problem,

and at very large gains, component performance begins to

cloud the observations.

6.5.2 Measured Performance

The first issue investigated was the impact of the

cycle time of the controller. The reconstruction,

observation, and control algorithm executed at roughly 178

Hz, more than ten times

controlled, yet only twice

four times the third. The

the flexible frequency to be

the fourth modal frequency and

first four clamped modes of the

system are presented in table 6-1.

Table 6-1. Natural Frequencies(Hz)

Mode Measured Calculated

1 2.08 2.096

2 13.92 13.989

3 41.38 41.524

4 81.18 81.225
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The effect of the controller cycle time was examined

by considering the step responses of a collocated controller

(sensor and actuator at the same location) using joint

angle, and joint velocity executing at 500Hz, as shown in

figure 6-7, and at the speed of observer/controller, 178Hz,

shown in figure 6-8. The joint angle, and strain at the base

of the beam were used to characterize the time response. The

gains utilized were the same as for the joint angle and

joint velocity of the optimal regulator. The longer cycle

time associated with the 178Hz controller resulted in a

noticeable increase in the excitation of the third flexible

mode. The amplitude of the flexible vibration is not as

dramatic as the strain response.

Next, a zero order hold equivalent observer was

designed with the discrete poles equivalent to negative real

poles two and a half times the frequencies of the flexible

poles being examined. The relationship between the flexible

modes and the observer poles is shown in table 6-2. The

result for this observer is shown in figure 6-9. The

controller was most sensitive to the modal velocity
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Table 6-2. Relationship between Flexible Modes

and Observer Poles

@

Modal Frequency

2.08Hz

13.92Hz

Equivalent Continuous Pole

Case i(2.5x) Case 2(5.0X)

-5.2 -10.40

-34.8 -69.60

gains produced by the observer. The instabilities did not

occur in the modes which were being treated by the truncated

model, but in the modes truncated for the model. The fourth

mode at 81Hz also had an increased response although this is

not apparent in the response. This

and control torques aimed at the

"spilling" over into the higher modes.

is due to measurements

first two frequencies

O

@

@

@

.500 I

rads
150

Joint_
Angle

Strain

•t Base

Control

Off

Figure 6-9. Step Response Case I.
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The measurement was repeated

poles at five times the flexible

relationship between the poles and

presented in table 2. The

observer/controller combination is

This controller does a very good

first two

strain and

third mode

power spectrum indicated an

fourth mode.

for an observer with

mode being treated. The

the flexible modes is

response for this

shown in figure 6-10.

job of controlling the

flexible

quickly

however

increased

modes, reducing the amplitude of the

damping the vibration. The untreated

is still noticeably excited, and the

excitation of the

.500 -
rads

150
B

Joint

Angle

Strain

at Base

!

-500- ,
,oo_

-.500 I
fads - 1 9gin

s # _%%

-, ,., /3olnt Angle

" at Base

I

f

J

I I I ! t I I I I
Se= 3. 8

Figure 6-10. Step Response Case 2.
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4

At higher gains, especially modal velocity gains even

this observer yielded unstable results in the higher modes,

though the controlled modes were consistently well damped.

The indicated trend is to

and farther to the left.

equivalent to ten times

push the observer poles farther

Placing the faster observer pole

the second flexible mode's pole

results in characteristic times for the observer approaching

the cycle time of the controller. The response for this

observer/controller combination is depicted in figure 6-11.

This combination resulted in significant excitation of the

third mode, and for the first time a dramatic response in

the fourth mode. This is counter to the trend, and most

.500
fads
150 _.Joint Angle

Joint

Angle

Strain
at Base

/

/
/
!
I
!

t
#

i I

!

Strain at Base-

Figure 6-11. Step Response, Poles i0 x Mode
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likely represents a fatal combination of increased noise

sensitivity as the observer poles are pushed father to the

left, and aliasing resulting from the controller cycle rate.

6.6 Summary

Reconstruction and observation of flexible variables

for use in controlling a single link flexible arm has been

successfully demonstrated. The results indicate that the

negative real parts of the observer poles must be placed at

least five times the magnitude of the flexible mode's

frequency being estimated, and possibly faster for higher

gains. Control spill-over was observed in several of the

cases investigated, and was aggravated by slow observers to

the point of unstable responses for some designs. A dominant

factor in the design of high performance observers/

controllers for flexible systems appears to be the response

of the higher modes. The application of passive damping

[VI7], treating the neglected higher modes, may reduce the

performance requirements of the observer/control system.
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CHAPTERVII

OPTIMAL REGULATOR

regulator, design with prescribed

investigated experimentally. The

linear system described by,

= Ax + Bu

U = KTx

is selected so as £o minimized

index of equation (7.3)

7.1 Introduction

This section discusses the results of implementing an

optimal linear state feedback controller based on quadratic

criteria for the experimental arm. A steady state, or

degree of stability was

control law K for the

(7.1)

(7.2)

the quadratic performance

(7.3)

over the process. The steady state gain solution is sought.

The formulation and solution to this problem with a

prescribed degree of stability, a, is discussed in detail in

Appendix C, including modification for the discrete sampled

and hold implementation.

The regulator is implemented

include a single flexible mode, and

addition to the rigid mode. Inclusion of more flexible modes

+ uTRu]dt

for two models which

two flexible modes in
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hopefully increases the model accuracy and controller

performance. Increasing the model order has a significant

cost in cycle speed of the digital controller. The regulator

which treats two flexible modes is discussed first.

Based

capabilities, and

model performance

7.2 Two Flexible Mode System

on initial estimates of

initial experimental

discussed in chapter

computational

results examining

3, a base design

treating the rigid motion, and two flexible modes associated

with clamped-free vibration modes was selected. This

selection of model order was supported by work which is

recorded in chapters 3 and 4. The performance of a regulator

based on this model is discussed in this section.

7.2.1 Controller Design

The parameters available to the designer affecting the

performance of the LQR

weighting matrices and

The initial weighting

controller are the elements of the

the prescribed degree of stability.

matrices utilized were taken from

Sangveraphusiri's[VII1] earlier design and simulation work.

Varying the elements of the weighting matrices as a tool for

achieving performance improvements of the controller was

extremely difficult. There is not a direct or intuitive

approach to modification of the elements of the matrices

which relates to performance goals, except in a broad sense.

Gains are easily increased by reducing penalties on
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actuation, but selectively altering velocity, or position

state penalties had strange impacts on performance.

The most useful method for altering the performance

was found to be obtained by varying the prescribed degree of

stability. This proved to result in consistent trends,

compatible with design intuition.

7.2.2 Implementation

The controller was implemented in software described

in appendix F. A cycle time of 5.9 milliseconds was achieved

for the two flexible mode controller. The controller results

are inexorably linked to the performance of the modal

velocity observer. The implemented observer was that

presented in chapter 6 with error dynamics five times faster

than the open loop poles

predicted from controller

model, were often not

being estimated. Good results,

designs based on the truncated

realized in experiment. The

experimental system was extremely sensitive to the second

flexible mode damping gain as discussed in chapter six.

This limitation on damping in the second mode,

apparently due to available computational speed, prevents a

rigorous examination of this controller. Controller design

by the use of a prescribed degree of stability can be

extended to act as a pole placement algorithm. Specification

of the diagonal elements of the stability matrix associated

with the each of the states of a specific mode, the minimum

degree of stability for each mode can be affected
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independently. The stability matrix,

closed loop system eigenvalues for

discussed are presented in table 7-1.

Use of the prescribed degree

resultant gains, and

the first case to be

of stability as a pole

placement algorithm allowed for evaluation of the "best"

combination for the two mode controller. The second flexible

mode was made to have as great a degree of stability as

possible without introducing instabilities into the higher

modes as no£iced in the observer evaluation. The performance

of the system was then evaluated as the degree of stability

for the rigid, and first flexible mode was increased

independently of the second flexible mode.

7-1. Design Results, Stability Gain Vectors,

Closed Loop Eigenvalues for Figures 7-1 and 7-2

Stability Matrix
u = diag[ 2.50 2.50 .2 2.50 2.50 .2]

Continuous Gains

F(collocated) = ili.2E+4 0. 0. 474.1 0. 0.

F(modal) = III.2E+4 -406.7 -291.6 474.1 15.7 -6.40

Continuous Eigenvalues
Collocated Controller

-3.239 3.053E-16

-11.98 -3.026E-15

-4.246 +/-15.11

-.3071 +/-88.99

Modal Controller

-4.95 -4.78E-i2

-5.04 4.86E-13

-4.99 +/- 18.97

-.401 +/- 89.06

Discrete Gains

F(collocated) = 871.9 0. 0. 373.1 0. 0.

F(modal) = 871.9 -297.8 177.4 373.1 11.7 -5.3

Discrete Eigenvalues
Collocated Controller

.962 9.497E-18

.975 -5.002E-15

.969 +/-9.539E-2

.863 +/-5.009E-I

Modal Controller

.969 -.112

.969 .112

.976 +/-.0112

.863 +/-.5008
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7.2.3 Experimental Results

The first experiment conducted in this stage of the

work was to compare a collocated controller to a modal

controller by implementing the same joint variable gains in

each case. A step response in joint angle was commanded, and

the response measured. The response figures all contain two

parts, part a depicts joint angle time response and motor

current, part b presents strain measurements from the base

and midpoints of the beam. The current represents torque

applied at the joint, and the strain is a measure of the

bending due to the flexible modes.

The degree of stability was the parameter varied for

this test. The prescribed degree of stability was increased

by increments of .25 until the stability of the collocated

controller started to degrade, as shown in figure 7-1

(degraded response being an increase in the flexible mode

response). The closed loop eigenvalues for the collocated

case and modal controller are shown in table 7-1. Further

increases of the prescribed degree of stability resulted in

instabilities of the third flexible mode, for the collocated

controller.

A modal controller with the same prescribed degree of

stability in the rigid and first flexible mode, with limited

stability in the second flexible is shown in figure 7-2.

The increased stability of the higher mode is readily

apparent in the strain response. After the large initial
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transient, the torque response tries to actively control the

flexible vibration. Note however that the flexibility is not

fully controlled; this is thought to be due in part to

hysteretic friction of the joint.

The degree of stability was increased for the rigid

and first flexible mode, resulting in higher gains which

would hopefully overcome the joint friction. The step

response is repeated as shown in figure 7-3. The addition of

the modal controller allows higher gains on the joint

variables than was allowed for the collocated controller

alone with this cycle time. The gains, and eigenvalues from

the design process are shown in table 7-2. Note the

increased damping of the
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Table 7-2. Design Results, Stability Gain Vectors,

Closed Loop Eigenvalues for Figure 7.3

Stability Matrix

= diag[ 3.25 3.25 .2 3.25 3.25 .2]

Continuous Gains

F(modal) = 1964.9 -699.1 -318.4 668.1 31.6 -1.83

Discrete Gains

F(modal) = 1523.2 -494.8 -34.5 520.8 23.6 -1.68

Continuous Eigenvalues
Modal Controller

-6.44 -7.49E-12

-6.55 7.31E-12

-6.50 +/- 18.99

-.399 +/- 89.06

Discrete Eigenvalues
Modal Controller

.961 -.113

.961 .113

.969 +/-.0144

.863 +/-.5008

flexible mode in the response. This controller implemented

with this prescribed degree of stability, however, appeared

to be sensitive to noise and would often go into a steady

vibration of limited amplitude. A second step command or

touch of the hand would often stop the vibration, but

marginal stability had been achieved in the fourth flexible

mode at roughly 83hz. Once the beam vibration was stopped by

use of the hand, it would remain motionless until perturbed.

This change is most likely caused by a change in the joint

damping from viscous friction, (when it is in motion), to

coulomb friction as it stops. The step response is captured

again for a case where this steady vibration is sustained

over the interval in figure 7-4.

Further increases in the prescribed degree of

stability yielded similar instabilities in the higher
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flexible modes. The parameter

was the damping gain on the

error indicated that higher

observed to cause this affect

first flexible mode. Trial and

modal amplitude gains resulted

in a more stable response for the same modal damping gain.

This trend of modal stiffness gain increasing system damping

is supported by work done in the single mode section.

The modal amplitude gain was increased until a "best"

(most stable with respect to disturbances) response was

obtained for the same first flexible mode damping gain. This

response is shown in figure 7-5, and the design parameters

presented in 7-3. Further

resulted in higher levels

modes.

The modal controllers did

flexible mode, and in the

increases in modal amplitude gain

of excitation in the untreated

improve the response of the

latter cases did yield

satisfactory control over the first flexible mode.

Additionally, with the modal controller larger gains could

Table 7-3. Design Results, Stability Gain Vectors,

Closed Loop Eigenvalues for Figure 7-5

Stability Matrix

e = diag[ 3.25 ? .2 3.25 ? .2]

Discrete Gains

F(modal) = 1523.7 -900.0 34.5 520.8 23.5 -1.68

Discrete Eigenvalues
Modal Controller

.970 -.303E-17

.976 .175E-17

.969 +/-.0884

.908 +/-.4137
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be applied to the joint variables than was possible with the

collocated controller. The next question to be addressed is

the robustness of these control laws. The next section

investigates the noise sensitivity, and payload sensitivity.

7.2.4 Disturbance Re_ection and Robustness

In the preceding section control laws were selected

which yielded faster settling times in the design process by

effectively moving the continuous

and farther into the left half

degree of stability. This results

values. This section will

rejection and robustness of

what, if any, penalties are incurred

closed loop poles farther

plane using th_ prescribed

in larger and larger gain

investigate the disturbance

the control laws, examining

with the higher gain

values. First disturbance impulses will be applied to the

experimental system, and then changes in payload mass from

the design value will be examined.

7.2.4.1 Disturbance Impulse Response

An impulse hammer was used to apply a disturbance to

the beam at the payload. This would correspond to the arm

making contact with a work piece or bracing surface. The

amplitude of the impulse was selected to cause a peak

disturbance of roughly five to six inches at the payload.

The time domain response of the beam was found to be the

most revealing measurment, though frequency domain results

could be obtained from the hammer impulse signal. Though the
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signal from the hammer was

measurements, the design of the

operators control of the impulse

not utilized in these

hammer still enhanced the

delivered to the beam. The

response of the collocated control law of 7-1 above is shown

in figure 7-6

The beam was additionally struck at random locations

along its length with similar responses. The response of the

modal control law with the same

stability on the joint and first

shown in figure 7-7.

The response of modal

highest prescribed degree

prescribed degree of

mode state variables is

control law which achieved the

of stability, (design data in

table 7-2), is shown in figure 7-8.

The modal control law with a high degree of prescribed

stability, and the "best" control law, while able to control

the flexible vibration had large peaks and a good deal of

activity in the impulse response. This indicates that the

tighter control laws with large gain values are more

susceptible to disturbances.
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7.2.4.2 Payload Sensitivity

The ability of

in payload mass is of

variety of objects

the controller to tolerate variations

interest in real applications where a

must be handled. The payload was

increased to a total of four times the design payload, and

the step response observed again. Responses for the control

laws are shown in figures 7-10, through 7-14.

The additional payload mass resulted in increased

overshoot of the joint angle, and modal variables typical of

the expected reduction in damping ratio. Additionally, the

response of the higher untreated flexible modes was greatly

reduced in all cases, even the case of the modal controller

with a large prescribed degree of stability. This is due to

increased separation of the higher

variation in boundary condition at

beam.

frequencies due to the

the payload end of the
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7.3 Single Flexible Mode System

Computational speed, and not model order, appeared to

be the limiting factor in many of the experiments conducted.

Therefore the design and implementation were repeated for a

system model comprised of the

mode. The first clamped-mass

inclusion in the model.

7.3.1 Desiqn and Implementation

Once again the prescribed

to be the fastest and most

system poles. However the

flexible mode and increased

rigid mode, and one flexible

mode shape was selected for

degree of stability proved

flexible method for placing the

low frequency of the first

computing speed allowed for a

placement of the single observer pole equivalent to ten

times the frequency of the modal velocity being estimated.

The modal reconstruction/observer/control law

combination for the single mode case operated at a cycle

time of 4.8 milliseconds.

7.3.2 Experimental Results, Prescribed Deqree of Stability

The first experiment conducted in this stage of the

work was to compare the performance of the collocated

controller operating at the frequency of the faster one mode

controller to the earlier collocated response. The same

collocated gains as those used for the controller with two

flexible modes was applied to the single flexible mode

system. The step response is shown in figure 7-14.
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There is a marked

third flexible mode

controller operating at

reduction in the excitement of the

when compared to the collocated

the slower cycle time of the two

mode system. A single flexible mode controller with the same

prescribed degree of stability as the collocated case was

implemented, and the step response is shown in figure 7-15.

The single mode controller achieves a smoother more damped

response over the two mode controller primarily because of

the increased speed of the observer and sampling frequency.

The prescribed degree of stability for the collocated

controller operating at the speed of the faster single mode

controller could be increased significantly over that of the

slower two mode system before the same amount of excitement

was observed in the third flexible mode. Additionally at

the higher gains more damping was observed after the initial

step transient in the first

to result from the higher

hysteretic friction of the

flexible mode. This is thought

control actions overcoming the

joint. The response for this

collocated controller is shown in figure 7-16.
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A modal controller for the first flexible mode was

implemented with the same prescribed degree of stability in

both the rigid and flexible mode as that for the collocated

controller. This response

again the success of the

excitation of the first

is shown in figure 7-17. Note

modal controller at reducing the

flexible mode, and the higher

flexible modes, not treated by the model until the amplitude

gets very small. The design data for the controllers of

figures 7-14,15,16,17 is presented in tables 7.4-5

Table 7-4. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figures 7-1'4 and 7-15

Stability Matrix

= diag[ 2.50 2.50 2.50 2.50]

Continuous Gains

F(collocated) = 1112. 0.

F(modal) = 1112. -406.7

Continuous Eigenvalues
Collocated Controller
-3.215 -3.306E-16

-12.45 1.669E-16

-4.333 +/-15.11

474.1 0.

474.1 15.7

Modal Controller

-4.434 2.305E-15

-5.744 -3.199E-15

-5.203 +/-19.01

Discrete Gains

F(collocated) = 871.9 0. 373.1 0.

F(modal) = 871.9 -297.8 373.1 11.7

Discrete Eigenvalues
Collocated Controller

.967 1.536E-18

.981 -1.570E-28

.975 .0778

Modal Controller

.959 +/-.152

.992 +/-.106
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Table 7-5. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figures 7-16 and 7-17

Stability Matrix
= diag[ 2.75 2.75 2.75 2.75]

Continuous Gains
F(collocated) = 1346.4 0.
F(modal) = 1346.4 -470.9

527.0 0.
527.0 21.1

Continuous Eigenvalues
Collocated Controller
-3.327 -3.341E-16

-16.11 2.435E-15

-4.065 +/-14.388

Modal Controller

-5.50 +/-.0065

-5.50 +/-19.13

Discrete Gains

F(collocated) = 1294.3 0. 509.7 0.

F(modal) = 1294.3 -419.2 509.7 19.2

Discrete Eigenvalues
Collocated Controller

.928 9.380E-18

.983 -7.735E-19

.976 +/-.0684

Modal Controller

.970 +/-.320E-16

.969 +/-.089

The prescribed degree of stability was increased by

increments of .25 until until the largest degree resulting

in a stable response was achieved. The response for the

resulting control law is presented in figure 7-18. This

controller results in large applied torques during the

initial transient and an increased level of noise throughout

the response in the torque and strain traces. The stability

and damping of the first flexible mode is definitely

increased, however the settling time for the system has not

been significantly increased. The large torques applied to

slew the joint variables at high gains causes large flexible

deflections which, although highly damped, require time to
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settle out. The design results for this case are shown in

table 7-6.

Table 7-6. Design Results, Stability Gain Vectors,
Closed Loop Eigenvalues for Figure 7-18

Stability Matrix
= diag[ 3.75 3.75 3.75 3.75]

Continuous Gains
F(modal) = 2668.0 -840.3 806.2 47.7

Discrete Gains
F(modal) = 2528.3 -758.4 770.2 43.3

Continuous Eigenvalues
Modal Controller

-7.50 +/- .0049

-7.50 +/- 19.13

Discrete Eigenvalues
Modal Controller

.958 +/-.149E-17

.960 +/-.0877

7.3.3 Experimental Results, Pole Placement

Increasing the prescribed degree of stability by equal

amounts for both the rigid and flexible modes did not

achieve the desired result

for the system. Although

successfully introduced into

of improving the settling time

large amounts of damping was

the flexible mode the overall

settling time did not consistently improve. Large overshoots

of joint angle were necessary to reduce the excitement of

the flexible mode, and the large gains associated with high

degree of stability introduced noise into the system.

This indicated that better results might be obtained

if more stability was prescribed for the flexible mode than

the rigid mode. A prescribed degree of stability for the

joint angle was selected which achieved a rapid slew rate in
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the earlier experiments, yet which did not tend excite the

flexible mode as much as the largest degrees of stability

prescribed for the joint variables. The stability for the

flexible mode was then moved as

a stable response. This result

the design data in table 7-7.

far left as would allow for

is shown in figure 7-19, and

Table 7-7. Design Results, Stability'Gain Vectors,

Closed Loop Eigenva!ues for Figure 7-19

Stability Matrix
= diag[ 2.75 3.50 2.75 3.50]

Continuous Gains

F(modal) = 1372.0 -736.4 553.1 14.2

Discrete Gains

F(modal) = 1306.8 -664.1 529.1 11.6

Continuous Eigenvalues
Modal Controller

-5.22 +/- 1.00

-7.27 +/- 19.46

Discrete Eigenvalues
Modal Controller

.961 +/-.089

.974 +/-.0042



102

.225

. rads

15.0

Amps

Joint

Angle

Motor

Current

Joint
Angle /

_Motor Current

Figure 7-19a. Modal Controller,

= diag[2.75 3.5 2.75 3.25],

Joint Angle/Motor Current Step Response

@

@

@

2OO

Micro-

strait

--4O0

I Strain at Base
/

.......................
Strain at Midpoint

i

I I I I I I I I ,I .I

Figure 7-19b. Modal Controller,

Strain at Base/Midpoint Step Response



103

D

An interesting result of this design procedure is that

samller amounts of modal damping

flexible pole to the left than

flexible are moved to the left

are required to move the

when both the rigid and

in equal amounts. However,

the resultant trace shown in figure 7-19 does not show the

predicted damping. The modal damping was increased to

observe its effect, and this result is shown in figure 7-20.

Table 7-8. Design Results, Gain Vectors,

Closed Loop Eigenvalues for Figure 7-20

Discrete Gains

F(modal) = 1306.7 -664.0 529.9 43.2

Continuous Eigenvalues
Modal Controller

-4.56 +/-1.61

-3.88 +/- 21.96

Discrete Eigenvalues
Modal Controller

.978 +/-7.40E-3

.976 +/-.104

The

response,

overshoot

parameters

additional damping resulted in a very nice

with the shortest settling time and least

of all the designs. The resultant design

are contained in table 7-8. Two additional

conditions are thought to be of interest in the identifying

the behavior of this combination. One case is the largest

possible stable combination of

the flexible mode. The second

modal velocity gain alone to

amplitude and rate gain on

case is the application of

the flexible mode. The case

where large modal gains are coupled with moderate joint
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variable gains is depicted in figure 7-21. This is seen to

result in excitement of the second flexible mode.

Table 7-9. Design Results, Stability Gain Vectors,

Closed Loop Eigenvalues for Figure 7-21

Discrete Gains

F(modal) = 1306.7 -2000.0 529.9 50.0

Continuous Eigenvalues
Modal Controller

-2.71 +/-2.53
-4.91 +/-28.62

Discrete Eigenvalues
Modal Controller

.969 +/.1364

.976 +/-.012

Two cases of modal velocity gain only on the flexible mode

coupled with reasonable joint variable gains were selected.

Figure 7-22 depicts the response for a large amount of

damping gain which achieved a stable response. Note that the

first flexible mode while damped, is not damped as well as

when coupled with some amplitude gain.

Table 7-10. Design Results, Gain Vectors,

Closed Loop Eigenvalues for Figure 7-22

Discrete Gains

F(modal) = 1306.7 -0.0 529.9 40_0

Continuous Eigenvalues
Modal Controller

-3.41 3.6E-16
-9.95 1.70E-17

-2.13 +/- 18.36

Discrete Eigenvalues
Modal Controller

.951 1.33E-18

.984 -1.76E-19

.985 +/-.087

O
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The second case of damping gain only on the flexible mode

coupled with moderate gains on the joint variables is shown

in figure 7-23.

increased over the

mode was excited.

This time the modal damping gain was

last case, and a pinned-free vibration

Table 7-11. Design Results, Gain Vectors,

Closed Loop Eigenvalues for Figure 7-23

Discrete Gains

F(modal) = 1306.7 -0.0 529.9 -50.0

Continuous Eigenvalues
Modal Controller

-3.13 2.12E-17

-2.94 0.0

-3.29 +/- 10.7

Discrete Eigenvalues
Modal Controller

.851 -8.67E-19

.985 -9.37E-19

.983 +/-.050
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7.3.4 Disturbance Rejection and Robustness

Two of the modal controllers from the previous section

attained results consistent with the aims of the design

process. The modal controller with the high prescribed

degree of stability in both the rigid mode and the flexible

with step response shown in figure 7-18 is examined in this

section. Additionally, the controller with a larger

prescribed degree of stability in the flexible mode (and

higher damping gain than from the design process) with step

response figure 7-20 is examined here.

7.3.4.1 Disturbance Impulse Response

An impulse hammer was used to apply a disturbance to

the beam at the payload. This would correspond to the arm

making contact with a work piece or bracing surface. The

amplitude of the impulse was selected to cause a peak

disturbance of roughly five to six inches at the payload.

The time domain response of the beam was found to be the

most revealing measurment, though frequency domain results

could be obtained from the hammer impulse signal. Though the

signal from the hammer was

measurements, the design of the

operators control of the impulse

not utilized in these

hammer still enhanced the

delivered to the beam. The

disturbance response of the modal controller with a large

and equal amount prescribed stability is shown in figure 7-

24_ and the disturbance response of the controller with a

larger degree of prescribed stability in the flexible mode
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is shown in figure 7-25. The large gains associated with

prescribing a large degree of stability reduces the

disturbance rejection of the system, as seen in the trace.

7.3.4.2 Payload Sensitivity

The payload was increased to a total of four times the

design payload. Responses for the two cases are shown in

figures 7-26, through 7-27. The increased mass results in

the expected overshoot of the rigid mode. The response of

the unteated higher flexible modes was generally reduced in

the experimental observations. This is thought to result

from the increased separation of the modal frequencies. The

higher modes approach clamped-pinned shapes while the lower

modes do not change significantly.
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7.4 Summary

Control laws designed as linear quadratic regulators

did successfully damp and control the vibratory modes

included in the system model. The controllers were even

successful in the presence of joint friction and measurement

noise.

Using the

regulator design

placement of the model poles.

Attaining a rapid cycle

implementation by neglecting

prescribed degree of stability in the

process allowed for rapid and direct

time

the

for the digital control

second flexible mode

resulted in an improved response over the inclusion of the

second mode.

Even small amounts of modal feedback resulted in more

stable systems than collocated controllers, though the

stability was added to untreated modes.

Attempts to obtain very short settling times for the

system by prescribing large degrees of stability were

ineffective. Though the rigid and flexible modes appeared to

individually achieve tighter control, coupling between the

modes caused the overall time to

Fast joint rotations caused large

occur, and the large modal gains

degree of stability required

rotations to damp the mode.

remain roughly the same.

modal amplitudes to be

resulting from the large

additional joint angle
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The higher gains resulting from

degrees of stability also resulted in

higher untreated flexible modes, and

large prescribed

excitation of the

poorer disturbance

rejection. The best combinations resulted from placing more

stability in the flexiblemode, than the rigid mode.

Large gains always resulted in the appearance of

untreated flexible modes. It

move the flexible poles far

result in reductions of model

observed result.

was anticipated that trying to

from the modeled poles would

accuracy. This was indeed the

Q
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CHAPTER VIII

KALMAN FILTER

8.1 Introduction

This section discusses the application of a Kalman

Filter to estimate the modeled states. The estimated states

are then used to generate control torques for the

experimental arm based on a LQR state feedback law.

For a linear system subject to white noise plant

disturbances w(t) and white measurement noises v(t),

xi+ 1 = Ax i + Bu i + w i (8.1)

Yi = Cxi + vi (8.2)

u i = KTx i (8.3)

Plant ,,...........
"- o

,, _A.(,,- Bo_,)i
I

o

!....... _A_,,. eo_,,I

Estlrnator /

_(T+I)

y(i+ _)
n

Figure 8-1. Kalman Filter Block Diagram
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a filter can be designed

8-1 which minimizes the mean error.

The task is to determine a steady

which minimizes the performance index,

with the structure shown in figure

state filter gain, L,

PI = I/2_ [eiTM-liei + (Yi-Cxi)TRv-li(Yi-Cxi)] (8.4)

M is the covariance of the filter error between the updated

estimate, and the plant. R is the covariance of thev

• measurement noise. The formulation and solution to this

problem is discussed in detail in Appendix D.

8.2 Implementation

The Kalman Filter discussed above was implemented for

a model with a rigid mode and one clamped-mass flexible

mode. Software for the IBM Series/l executed at a cycle time

of 5.85 milliseconds, slightly faster than that for the two

mode observer yet significantly slower than the single mode

observer. One of the reasons for the favorable speed

compared to the two mode observer is the removal of the

reconstruction algorithm. The measurement matrix include the

strain measurements directly as shown in equation (8.5).

y = [ 8,¢(x=0),¢(x=i/2),8 ] (8.5a)

x = [ 8,q,e,q ] (8.5b)
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C -"

1.0 0.0 0.0 0.0

0.0 ca__(O) 0.0 0.0
2

0.0 ca_/9.(.5) 0.0 0.0
2

an

0.0 0.0 1.0 0.0

(8.5c)

8.3 Measurement Noise

The measurement gain, L, for the Kalman Filter depends

entirely on knowledge of the covariances of the measurement,

and plant disturbances. It is

knowledge of the disturbances

this case where it is hoped

difficult to gain a thorough

to the plant, especially in

that unmodeled plant dynamics

may be treated as disturbances. Information about the

measurement noise is easier to gain and forms the starting

point for this investigation.

The power spectrums for the

velocity, strain at the hub, and

the beam were captured using a

spectrum analyzer.

The noise was thought

characteristic time of less

variance can be determined to

autocorrelation measurements over

joint angle, joint angle

strain at the midpoint of

Hewlett Packard 3562A

to be bandlimited by a

than two seconds. The noise

within i0 percent by taking

sampling intervals of at
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least i00 seconds as given by;

1 2
T -- m •

•12 8
(8.6)

where the .i represents the needed accuracy, and 8 the

limiting time. This is an approximation for Gauss-Markov

correlation functions [VIIIl].

The joint angle and beam tip were fixed to prevent

rotations and vibration, and the power spectrums averaged

over ten periods. Additionally, the sampling time was

doubled to avoid wrap around, as suggested in the operating

spectrum

minutes

analyzer [VIII2]. This required

of data collection for each

power spectrums were inverse Fourier

manual for the

roughly thirty

measurement.

The resultant

transformed to obtain the autocorrelation function, and

estimate of the variance. The power spectrums for the joint

angle, figure 8.2a, and strain at the base, figure 8.2b, are

presented as examples of the noise spectrum. The

corresponding autocorrelation functions are shown in figures

8.3a, and 8.3b.

O
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The estimates of the measurement noise variances based on

the autocorrelation functions are shown in table 8. I.

Table 8-1. Noise Variance Estimates Based on
Autocorrelation Measurements

Measurement

Joint Angle

Joint Velocity

Strain at Base

Strain at Midpoint

Variance Estimate

I.IE-6 rad2/sec

238E-6 rad2/sec 3

141E-9 Strain2/sec

936E-9 Strain2/sec

8.4 Filter Design

The parameters available to the Kalman Filter designer

are the measurement noise specifications, the elements of

the disturbance noise distribution matrix, G, and the matrix

of disturbance noise intensities I shown in equation (8.6).

The covariance of the noise

implementation is determined from

G, and the continuous noise, w(t)

shown in equation (8.7).

w i for the digital

the distribution matrix,

with intensities I, as

The

intensity

= Ax + Bu + Gw

eA_tQk leAT_t [_t TQk = - + eA_GIGTeA Td_ (8.7 )

J0

determine [VIII3].

(8.6)

character of the distribution matrix, G, and

matrix, I, are often extremely difficult to

The untreated modes couple to the system
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through the mass and stiffness matrices, as well as the

control inputs by corrupting the strain measurements.

Attempting to model the untreated modes as noises, and

selection of an appropriate distribution matrix, G, for this

case results in a tremendous parameter space to search. The

following strategy [VIII3] has been suggested as one method

for tackling the Kalman Filter design problem, and was

partially utilized by Schmitz [VIII4] in his experimental

work. A state estimator robust with respect to errors in

modeling plant parameters can be obtained. The first step is

to assume that the disturbances to the plant are caused by

the control and are distributed by the input matrix, B.

Next, the covariance of the plant disturbance is assumed to

be much greater than

noise. This results in

close to the poles of

the covariance of the measurement

a robust state estimator with poles

the plant. This strategy was examined

experimentally. The parameters and design results are

contained in table 8-2.

The control laws resulting from LQR design were oupled

with the Kalman Filter estimates

closed loop system. Separation of

shown for the state observer in

of the states to form a

the poles is assured, as

chapter 6. Use of these

control laws additionally provides a point of comparison

with the reduced order observer/reconstruction controller

discussed in chapter 7.
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Table 8-2. Kalman Filter Design Results

State Vector x i = [ 8, q, 8, q ]

Measurement Vector Yi = [ 8, _(0), _(.5), 8 ]

Measurement Matrix (strain measured in micro strain)

1.0

C= 0.0

0.0

0.0

0.0 0.0 0.0

1530.0 0.0 0.0

630.0 0.0 0.0

0.0 1.0 0.0

Measurement Noise Covariance Matrix

V = diag[ 1.09E-6 .145 .939 2.37E-4]

Plant Noise Covariance

Q = 1.0E+6

Measurement Gain

4.318E-2

-3.552E-5

4.142E-I

-1.322

-4.238E-5

2. 412E-4

-2.178E-3

9.902E-3

-2. 621E-6

i. 491E-5

-i. 346E-4

6. 122E-4

1.914E-3

-8.4341-3

9.492E-I

-4.416

Discrete Eigenvalues (A-LC)
.2386

.4231

.9T73 +2.42E-2

.9773 -2.42E-2
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8.5 Experimental Results

Initially the collocated control law of table 7-1 was

applied to the Kalman Filter state estimates. This control

law was stable for the two mode controller whose cycle time

was roughly the same. Coupling this control law to the

Kalman Filter resulted in growing oscillations of the third

flexible mode during experiments with this control law.

Another control law was designed with a reduced degree

of prescribed stability and applied to the estimated states.

The step response for this control law is shown in figure 8-

4. The closed loop feedback back poles are identified in

table 8-3 for the collocated, and modal control law.

Note the slow decay of the 43Hz oscillation, and the

overshoot of this controller. The process was repeated with

a modal controller with the same prescribed degree of

stability. The response for this case is shown in figure 8-

5. There is very little

Kalman Filter is obviously

system very well.

alteration of the response; the

not tracking the states of the
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From experience

could be reduced by forcing

joint angle more quickly.

L(I,I) which is the update

joint angle measurement was

response was repeated with

it was apparent that the overshoot

the Kalman Filter to track the

The element of the gain matrix

of joint angle estimate due to

increased ten fold. The step

the modified measurement gain.

The result is recorded in figure 8-6.

Table 8-3. Closed Loop Poles.

Collocated Feedback Law

F = [ 667. 0. 349. 0.]

Modal Control Law

F = [ 667. -220. 349. 9. ]

Discrete Eigenvalues
Collocated Control Law

.957 3.323E-18

.983 -4.381E-18

.969 +/-9.700E-02

Modal Control Law

.973 -I.086E-18

.978 +3.782E-20

.970 +/-I.100E-01
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The results of this intuitive change in the measurement gain

is readily apparent. It much more difficult to cause this

type of change through creating "fictitious" noise values in

the measurement covariance.

Several other plant covariance values were examined,

with similar results. It quickly became apparent that this

was not a suitable approach to estimator design.

8.6 Summary

Comparison of the experimentally determined noise

covariances to the levels of periodic excitations caused by

the truncated higher flexible modes indicates that the

control problem is dominated by truncation effects, as

opposed to stochastic noise.

noise covariances result in

errors from the these sources.

The experimentally determined

expectations of very small

This is particularly true in

light of the measured content of the untreated flexible

modes during the control experiments conducted in chapter 7.

Some strain traces presented in chapter 6 contained periodic

amplitudes due to the higher flexible modes on the order of

I00 microstrain. The joint angle trace in many responses was

also significantly corrupted by the

impact of the unmodeled modes in

important than a consideration

Additionally, approximation of the

modal frequencies on

higher modes. Thus the

the system is far more

of the system noise.

impact of the distinct

the system by white noise covariance
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estimates is extremely questionable.

For some systems, such as airplanes, modeling flutter

of lift surfaces as stochastic disturbances to the craft is

more appropriate. The flutter can be measured or rationally

approximated, as well as the manner in which the disturbance

propagates throug_ the system dynamics. Additionally, the

aircraft disturbances are typically at much higher

frequencies than the characteristic eigenvalues of the craft

[VIII5]. This is not the case for the flexible manipulator.

Work done in chapter 6 indicated that observer poles

for the estimation of the modal velocities needed to be much

faster than the system poles being estimated. The Kalman

Filter design process results in relatively slow poles close

to those of the plant being estimated. This is reasonable,

as the filter was intended to minimize the mean estimate

error when the plant and

noise. The speed of these

to the actual states for

measurements are subject to white

poles results in slow convergence

initial errors in state estimates

and disturbances caused by the untreated modes.

Schmitz[VIII4] had limited success in dealing with

this problem by using a higher order model, and generating

fictitious estimates of the measurement noises. The

fictitious noise estimates were parameterized, and the

parameter space examined using root locus techniques to

obtained a usable measurement gain, L, for the Kalman
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Filter.

Use of the covariance values as a pole placement

algorithm was not as direct or successful as the traditional

method discussed in chapter 6 for the state observer design

process. Use of the Kalman Filter design process to obtain

pole placement is also thought to be impractical for future

applications because:

• As measurements are added, as in this experimental

work or in future multi-link systems, the parameter

space becomes extremely large.

• The model is not diagonal, and parameter variations

are coupled, thereby making the search of the

parameter space even more difficult.

In view of what has been learned form this exercise,

direct pole placement techniques, and traditional state

observer design methods appear more suitable to the flexible

arm problem at its current level of sophistication.



135

CHAPTERIX

CHRONOLOGY AND ADDITIONAL EXPERIMENTAL OBSERVATIONS

The work contained in the

chapters 1-8 follows a logical,

completely representative of the

body of this dissertation

cohesive path that is not

course of work required to

accomplish these results. This chapter discusses the

sequence in which the experiments progressed, and additional

interesting experimental observations regarding software,

and hardware impacts on the

observations would interupt

without adding insight to

section yet they may be of

future researchers.

experiments. The narrative and

the flow of earlier chapters

the results of a particular

interest and assistance to

9.1 Experimental Chronology

Once the experimental apparatus had been assembled and

verified a winding and broken

described in this thesis began.

chronicle the sequence of events

possible interest to future investigation which

otherwise go unrecorded.

Initial experiments focused

functional observer instead of

combination and the Kalman

path through the work

This section tries to

and comment on matters of

might

on implementation of a

the observer/regulator

Filter discussed in earlier
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chapters. A functional observer

states, for example a control

states. Functional observation

computational savings

computation of the

law,

can

over state

control. The

estimates a function of the

instead of individual

result in significant

estimation, and then

computational savings

associated with the

the early attraction.

Unfortunately,

observer

functional observer

implementation of

yielded unsatisfactory results

was the source of

the functional

and dramatically

demonstrated the negative

when applied to a system

to analyze the source

aspects of functional observation

with many uncertainties. In trying

of the discrepancies between

prediction and observation, the functional observer was

proved intractable experimentally.

The thesis effort took a dramatic turn at this point,

trying to identify clear, functional divisions in the

experimental apparatus and control system. Additionally,

questions arose concerning the model and methods for it's

evaluation. This led to functionally segmenting the system

into a reconstruction algorithm, state observation

algorithm, and controller as distinct elements.

Following analysis and design of the individual

functional elements, the experimental process was initiated

again with the observer/optimal regulator combination. Some

useful results were obtained, but stability and performance

observations were far from expectation. This led to the

Q
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sequence followed in the rest of the thesis, closely aligned

with the chapter titles;

I. Examination of the Model

2. Examination of the Reconstruction Algorithm

3. Examination of the State Observation

4. Examination of the Optimal Regulator

5. Examination of the Kalman Filter

This evolved into an iterative process of analysis,

experiment,'and comparison of the two. The process was

repeated until confidence was gained that hardware, design

software, and controller software bugs had been eliminated.

The work reported in the body of thesis could then be

conducted.

Often the hardware, and software problems were not

easily examined with the state space structure utilized for

selecting control laws. As will be discussed in the next

section, transfer function analysis was used in assessing

the impact of many of the components.

As the work progressed, usually meaning the

implementation of higher gains in a specific control design,

more faults or problems became apparent. The most

aggravating and recurrent problems came from sixty hertz AC

power noise picked up by the measurements, measurement phase

lag introduced by the Butterworth filters, and short life of

the potentiometer. The final limitation to evaluation the

proposed control schemes with this experimental system

appears to be computational speed.
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Sixty hertz noise repeatedly halted progress. It

appeared as a distinct harmonic disturbance which at times

excited modes in the 40Hz and 80Hz ranges.The sixty hertz AC

noise was removed in phases by carefully assuring that the

commons for all the signal conditioning devices were the

same. Instrumentation methods of grounding and shielding the

signal leads were implemented.

Instabilities which were not predicted by the analysis

techniques in use at earlier phases of the research were

particularly hard to resolve. Analysis discussed in the next

section using transfer functions identified the Butterworth

filters as the culprit. The filters were implemented

initially to act as band pass and band reject devices in the

hopes of improving separation between modes. Eventually,

after many unsuccessful

performance and phase

removed.

The mounting of

joint angle rotations

component. A rubber grommet

shaft to the motor hub. The

attempts to compromise between the

introduction, the filters were

the potentiometer used

was a particularly

to measure

troublesome

interfaced the potentiometer

grommet would wear and loosen,

allowing slippage between the motor and potentiometer. The

relative slip was of extremely small amplitude, and not

noticed from observation of the endpoint position.

The typical onset of the slipping condition was

noticed by a reduction in stability of the controller under
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observation. The gradual

coupled with the fact

progressing towards a

implementation,

onset of

that the

tighter control

made the identification of

the slipping condition,

work was almost always

law or new

this problem

extremely difficult for the first few occurrences of this

malady. The remedy was to replace the grommet.

9.2 Phase Sensitivity

The instabilities introduced by the four pole

Butterworth filters were not easily identified by the state

space structure used for control law design. At the time the

instabilities were occurring, the source of the difficulties

was unknown. The model and controller were suspect, as well

as the hardware components. To investigate the problem, a

simple and thoroughly analyzed collocated controller [IXl-3]

was implemented. This would hopefully allow for separation

of the hardware issues from the modeling issues.

Perhaps one of the most useful pieces of information

available for resolution of the problem came from companion

results for the unstable case with a passively damped beam.

The passively damped beam showed an increased degree

stability, and resultant analysis could be tested against

the two cases. Figure 9-1 shows a time response for the

experimental beam with collocated gains resulting in

unpredicted instabilities. Surprisingly the instabilities

are occurring in the second flexible mode. The measurement
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is repeated with a passively damped beam, and this time the

same gains do not result in instabilities in the second

flexible mode as depicted in figure 9-2.

Many components of the system were considered as

sources of unmodeled, and hence uncompensated dynamics.

These included sample rate (partially analyzed by sample and

hold discretization), digitization, torque motor/amplifier

dynamics, Butterworth filters, and tachometer. These factors

were examined individually and cumulatively for their effect

on system performance.

These components as well as the beam were modeled as

transfer functions, and assembled into an open loop transfer

function, as shown in figure 9-3a, and a collocated feedback

function as seen in figure 9-3. The transfer function, T(s)

of Figure 9-3b, is the open

transfer function of the beam

several researchers [IX4,5].

loop function of 9-3a. The

was common to the work of

The collocated controller was

analog hardware to eliminate the

digitizing.

also implemented in

questions regarding



141

l

| , , • , , |

Figure 9-I. Time Response, Experimental Beam.

c

a
_Jt

-800.00

! ' ' ' ' ' i

W0._ • _ |._

Figure 9-2. Time Response, Passively Damped Beam



142

Figure 9-3a. Open Loop Transfer Function Model

-_ K,,__--]

Figure 9-3b. Collocated Transfer Function Model
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The various transfer functions utilized in the analysis are

identified in table 9-1.

A(s)

E(s)

V(s)

K
e

Kt

b

V d

Rs

Kv

Kp

The

Table 9-1. Transfer Functions

Amplifier Transfer Function,
Voltage In to Voltage Out

Motor Electrical Transfer Function,
Voltage Applied to Current

Beam Transfer Function,

Hub Torque to Joint Velocity

Motor Back Emf Constant

Motor Torque Constant

Amplifier Gain

Desired Torque

Current Sense Resistor

Velocity Feedback Transfer Function

Position Feedback Gain

resultant closed loop transfer function from

commanded joint angle to joint angle could then be examined

for varying gains by monitoring the closed loop pole

locations. Evaluation of the torque motor/amplifier transfer

function did not change the expected stable result for

collocated feedback shown in figure 9-4.

Analysis of the discretization effects by a sample and

hold model did have a slightly destabilizing effect, but did

not significantly alter the earlier result for the torque

motor amplifier combination, even when examined together.
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Inclusion of a four pole low pass Butterworth filter

used to filter commutation noise generated by the tachometer

did have a drastic effect on the stability results. The

drastic change in the departure

poles is depicted in figure 9-5.

approximating the effect of the

angle from the open loop

The analysis is repeated

passive damping applied to

the beam with modal damping values determined from frequency

responses of the open loop

in figure 9-5.

It is apparent from

beam. The plot is also depicted

figure 9-5 that the second mode

goes unstable at sufficiently large gains. Additionally the

frequency at crossover closely approximates the frequency of

the instability determined from measurements shown in figure

9-1. This provides some

function analysis employed

observed phenomena.

The dramatic effect of

into the right half plane,

frequency roughly 30 times

confidence that the transfer

is accurately modeling the

the filter poles being driven

even though they are at a

the modal frequency, emphasizes

the proximity of the flexible poles to the real axis.
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CHAPTER X

SUMMARY AND RECOMMENDATIONS

I0.i Summary

This section briefly summarizes the important

observations and results of the various sections by topic.

• Linearized Model - The linear modeling technique

was implemented based entirely upon manipulator design

parameters. The responses predicted agreed well with

measurements when coupled with appropriate selection of

modal candidates and model order. The linear modeling

technique was readily adapted for computer generation of

models with different modal candidates and orders. The model

predicted increased responses of the higher modes than was

experimentally observed. The increased response predicted by

the model is attributed to inaccurate determination of the

damping for the higher modes.

• Mode Selection - The application of feedback

control laws to the flexible manipulator strongly impacts

the resultant flexible vibration modes. It is extremely

important to consider the control action in selecting modal

candidates. The flexible manipulator's beam exhibits pinned-

mass modes without control action, and as seen in chapters

3, 7, and 8 may exhibit clamped-mass, or pinned-mass modes

under the action of control laws. Clamped-mass modes were
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used in the LQR control implementation.

• Model Order - The response of the flexible arm was

dominated by the rigid and first flexible modes. The

application of large feedback gains and the effects of

discretization had a significant impact on the required

model order• The faster the cycle time, the less the

response of the higher modes• A change in cycle time from

5.8 milliseconds, to 2.0 milliseconds resulted in almost

complete elimination of the

strain traces recorded for

collocated controllers. The

third

step

speed

flexible mode from the

responses obtained with

was even more important

than the inclusion of the second mode in the LQR controller.

• Model Order Reduction - The application of the

method of balanced realizations to the evaluation of model

order agreed well with the qualitative evaluation made in

chapter 3. Aggregation of the seven highest flexible modes

of the ten mode model,

resulted in only a 6.7%

to estimate model order

(an aggregation level of six),

increase the performance index used

requirements. The inclusion of the

first two flexible modes and the rigid body mode brings the

performance index to its maximum value of 100%. The method

is based upon examining the strengths of the singular values

of the linear model being evaluated. Therefore, in this

application the method cannot evaluate the accuracy of the

model in describing the physical problem. The method does

provide a satisfactory estimate of appropriate order for a
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selected model.

• Measurement and Reconstruction - This technique was

particularly successful when utilized for the single mode

model. The evaluation for the two mode model is less certain

due to experimental limitations. Measurement of strain due

to the vibrations of the higher flexible modes truncated

from the model was a particular problem. Measurement of the

higher modes definitely contributed to the control actions

exciting the third clamped-mass mode at 41Hz when large

gains were applied•

• Reduced Order Observation - The modal observers

were successfully applied to the flexible manipulator. The

most significant factor in the design process was to insure

that the estimator was fast enough to accurately track the

flexible mode amidst initial offsets and measurements of the

higher modes. Slow observers, while successfully providing

an estimate of the velocity, tended to excite the higher

modes truncated from the model when used in feedback control

laws.

• Linear Quadratic Regulators - The application of

LQR controllers to the control of vibratory modes occurring

in flexible manipulators was successful in damping the

vibratory modes of the system, as well as control the rigid

orientation. The modal controllers were successful even _n

the presence of measurement noise and hardware

imperfections, such as joint friction.
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The joint friction makes collocated controllers

ineffective for precise control of the manipulator. Once the

joint is close to the desired final state the applied

torques become smaller than the torque required to overcome

friction. At this point the system becomes uncontrollable

for the collocated controller. Additionally, the beam

vibrates in cantilevered

the vibratory modes

measurements.

The fastest settling times

single flexible mode controller

modes without joint rotation and

are unobservable by the joint

were achieved with the

designed with high modal

damping. The settling times

on the order of one second

angle of .35 radians. This

roughly twice the period

clamped-mass flexible mode.

indicated by the model for

achieved with this design were

for step changes in the desired

settling time corresponds to

of oscillation of the first

The quickest closed loop poles

the single mode LQR controller

with a high prescribed

.005i and -7.5 +/-19.13i

pairs were considered as

would both correspond to

the final states), of .533

stability design technique

degree of stability were -7.5 +/-

radians/sec. If each of these pole

separate second order systems they

a settling time,(to within 2% of

sec.: The prescribed degree of

yielded poles with the same

negative real parts. The response for the total system with

these eigenvalues, settling times of 1.2-1.3 sec., was

roughly twice the the time for the individual poles.



150

O

Q

Experimental attempts to shorten the settling time by

increasing the prescribed degree of stability in the control

law design yielded instabilities in the flexible modes

truncated from the model.

• Kalman Filter - The

is not recommended for design

application of Kalman Filters

of estimators to be used in

controlling flexible

covariances yielded

strain traces 40-50

neglected modes.

The Kalman

close to those of

manipulators.

expectation of

Db below the

Estimates of the noise

noise signals in the

strains caused by the

Filter designs yielded estimator poles

the plant poles being estimated, much

slower than indicated by the earlier results on modal

velocity observation. Placement of the estimator poles by

creating "fictitious" noise estimates and input distribution

matrices was difficult and less direct than traditional

methods.

10.2 Discussion

The most appropriate work for comparison is that

conducted by Schmitz [Xl] at the Guidance and Control

Laboratory associated with Stanford University. This section

will compare the experimental equipment, and results for the

two efforts.

Schmitz

control of a

experimentally examined endpoint position

flexible manipulator structure. The endpoint
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position of the experimental manipulator was sensed by an

optical sensor mounted external to the manipulator which

viewed the intended objective for the endpoint motion.

Schmitz employed a manipulator constructed with

sidewalls made from aluminum sheets joined at regular

intervals along the length by braces. The construction

employed by Schmitz is similar to the light weight truss

structures favored by aerospace engineers [X2-3]. The first

three cantilevered modes

0.554, 2.781, 7.468Hz.

damping ratios for these

of the manipulator structure were

Schmitz experimentally determined

modes in the range of .015-.020.

The manipulator structure was complex, and difficult to

model. Schmitz assumed a decoupled modal form for the system

dynamics and then

experimentally.

The aim of the

executed identification algorithms

work presented in this thesis was to

construct a modal controller which determined and controlled

the vibratory modes of the system, as well as the

orientation in space. The objective of the sensor system

implemented in in this study was to not require apriori

knowledge of the final configuration of the manipulator. The

controller and sensor system can be active over the full

range of motions insuring control over the quality of motion

and peak stresses.

The continuous

representative of

beam used for this thesis is

lightweight manipulators receiving
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attention for industrial IX4] and aerospace [X5]

applications. The first three cantilevered modes of the beam

are 2.08, 13.92, 41.38Hz with measured damping ratios in the

range of .007-.015.

Schmitz achieved better agreement between his model

and experiment, than was obtained in this work. This is not

suprising as Schmitz used a higher order model,(three

flexible modes and a rigid mode), and experimentally

identified all the parameters of the system.

Schmitz obtained endpoint position step responses with

settling times of one second roughly half the period of

oscillation of the first cantilevered mode. This compares

favorably to the rough guideline established by Book [X6].

Book limits the upper response of a collocated controller to

half the first cantilevered mode. The modal controller in

this work obtained modeled settling times of .533 for each

state, roughly the period of oscillation of the clamped-mass

mode. The controller which tried to regulate both states

with a single control input was half as fast.

Part of Schmitz

is attributed rouse

control. Additionally,

success in obtaining quick responses

of endpoint position as the primary

the computation speed required by

Schmitz is roughly one third that required in this work

based on the ratio of flexible mode frequencies. The

additional damping found in Schmitz's structure increases

the stability of the system, as was found with the passive
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damping treatment discussed in chapter nine.

Schmitz considered that the upper time response limit

attainable with endpoint control was caused by non-minimum

phase zeroes associated with a time delay observed in his

experiments from when torque is applied until tip motion

occurs, (roughly 120 milliseconds for his apparatus). The

modal controller developed in this work obtained strain

measurements from the base of the beam and observed strain

responses were effectively instantaneous with respect to the

applied torques. The primary limitation encountered in this

work was computational speed which limited model order.

These two works are not contradictory, or mutually

exclusive, and in most phases they are complimentary. The

observed trends in stability and difficulties of obtaining a

good dynamic model in the two efforts were in complete

accord. The selection of approach for future work might well

be driven by the chosen application, or even hybrid schemes

investigated, (the possibilities for hybridization was also

recognized by Schmitz).

10.3 Recommendations

It appears clear at this point that the selection of

the flexible vibratory modes is extremely important in

generation of a useful model. Additionally, identification

of the manipulator structure is not the answer, as the

application of feedback control laws alter the modes
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observed in closed loop form of the system. It seems

appropriate, then, that methods be sought which incorporate

the feedback law into the modeling process, (Majette [X7]

considered this problem for manipulators with small motions

about an equilibrium). These methods are thought to come

from iterative processes between beam solution techniques

and Lagrangian dynamics.

Future flexible manipulators consisting of serial

links and complex geometrical configurations will require

the inclusion of many more modes in the model. These modes

arise from torsion and bending in more than one plane for

each link. Models including modal series consisting of a

large number of terms may never be realizable in available

real-time controllers. Based on this experimental history it

is doubtful that blind truncation of model order will yield

successful results when high performance of the manipulator

is required.

Methods need to be adapted

higher mode's responses even when

order controller. Frequency domain

which account for the

designing for a lower

methods [XS] promise to

accommodate the feedback boundary conditions in the model as

well as robust controller design. The research issues facing

the frequency domain approaches lie in merging the physical

measurements with the frequency domain description and

computational requirements of practical implementations.
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Balas IX9] proposed phase-locked loop filtering for

the rejection of the untreated higher modes from the control

or the measurement. Filters which remove information about

the truncated modes from the measurement is still an

appealing technique for research, although the attempt in

this work with analog butterworth filters, as discussed in

chapter I0, was disappointing.

Design of structures which inherently reduce the

response of the higher modes should be pursued. This type of

structure would greatly reduce the control problems

encountered in this work. Combining attempts at designing

"lossy" joints, and beams, such as passive damping [X3]

treatments, may result in successful high performance hybrid

active/passive schemes.
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APPENDIX A

FORMULATION OF DYNAMIC EQUATIONS

This section describes

model via application of

flexible system [AI,A2].

the generation of a dynamic

Lagrange's equations to the

A.1 Coordinates

The first step in this process is to select a suitable

set of coordinates. The approach utilized selects one rigid

body coordinate associated with the joint rotation, and

flexible transverse displacements from a set of axes

attached to the joint. This is depicted in figure A-I. Then

O /.4 x

• /LIGID BODY ROTATION

p POSITION VECTOR-?,./ _//_/ /"

J 8 ROTATION ANGLE •

) REFERENCE FRAME

Figure A-I. Coordinate Definition
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a position vector R to every point of the system can be can

be constructed;

= xi + w(x,t)j (A.I)

The absolute velocity of the position vector;

= DR + _kxR (A.2a)

_t

= xi + iww(x,t)j + 8xj-Sw(x,t)i] (A.2b)
_t

$

Q

A.2 Kinetic and Potential Energies

The kinetic energy of the system KE, can then be

computed by integrating this expression over the entire mass

of the flexible system Ms;

1 [ " "

K_.=_ ] _._m

R.R = [_w(x,t)] 2 + 2%__ww(x,t)x

_t _t

+_2[x2 + w2(x,t)]

(A.3a)

(A.3b)

K_ = ½ I_[_w(x_t,t)]
2

+ 283w(x,t)x + (A.3c)
_t

_2[x2 + w2(x,t)]}dx

Next, introduce the assumed mode series representation for

the transverse deflections w(x,t);

w(x,t)=_ i $i(x)qi(t) ' for i=l,2...n (A.4)
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Q

where _ = x/L a normalized length variable. Substitution for

the transverse deflections results in;

KE= ½ I{_i(_,_ti(t,_j(_,_tj(t, + (A.5a)

dt 1

This integral can be separated into three integrals over the

primary components of the beam. joint mass. beam mass. and

payload. Evaluation of equation A.5a over the joint mass

results in;

KErn = ½ J0[_i(0)_ti(t)_dd_j(0)_tj(t) + 52 ] (A.5b)

Evaluation of equation (A.5a) over the mass

results in;

z+± jKEb= _Jb 8 _AbPL {_,i(D)_ti(t)_ j(D)_j(t) + (A.5c)

of the beam

28DL_ i(n)_t i(t) }d_

Notice that in evaluating;

 Ab0 IE 2n2

the squared flexible

compared to the axial

+ _i(o)qi(t)_j(_)qj(t)]d_
(A.6)

deflections was assumed negligible

dimension squared. This linearization

step can be postponed to until the equations of motion are

formed, but this results in applying the same assumption to
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multiple terms. Finally the integral is evaluated over the

mass of the payload as;

KEp = _[MpL2+jp]_2+ _Mp_i(1)dq.(t)_j(1)_tj(t)+drl (A.7)

I/2JpMptdn_d__i(n )dd_tti (t )_dd_j (_ )dd_tj (t)

Next, it is convenient to introduce an orthonormal condition

on the spatial mode functions.

g Mp ,i(1) i(t) ,j(1) j(t) +

IjpMp_dd_ni(n)_ti(t)_dd_nj(D)dd_tj(t) = I, for i=j
0, for i=j

The potential energy, PE, for the system is evaluated by the

following integral expression;

PE

adx2 _dx 2

Applying the orthogonality condition on the mode functions,

and substituting the normalized length variable yields;

if
PE = :Ei[{)[d__i(D)]2qi(t)}dD_2 (A.10)

zTj L d_ 2

Notation in the following sections can be greatly simplified

if the following definitions are made for a "modal

stiffness", Ki, for equation (A.10), and "moment of modal
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mass", W i, for the last integrand in equation (A.5b) as;

d_

Wi = _AbPL[_L_i(q)dn
(A.12)

The kinetic energy for the system can be expressed as;

KE = ½ 2[J0+Jp+MpT2]÷ ÷
(A.13)

LJp_(1)] + l_[_i(t)]2

O A.3 Lagrange's Equations

To generate the dynamic equations the Lagrangian of

the energy expressions are formed, where the "qi are the

coordinates, and Qi represents the work done by the input

torque at the joint by each coordinate. The resultant

equations can then be organized in matrix form;

dt I_i I _i

[M] z + [K]z = [Q]

(A.14)

(A.15)

Z = [8,ql(t),q2(t), .... ,qn(t)]
(A.16)
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M "

J +J +J +ML 2
0 b p p

WI + _p$I(I) * Jdl_._n_(1)

W2 + L.mlp$2(1) $ Jdp._In2(1)

+ _p$1(1)+ Jpdd._nwI 1111

I

(A.17)

W2 + LMp¢2(I) + Jp_n2(l) -..

0 ..

I ,ee

K _'_

0

0

This system is

K 1 0 ..

0 K 2 -.

: : •

easily organized

model as shown in figure A-2.

®®

8
°°

ql
°.

q2

0

M-IK

I

Q .. 1

dd-_nl(0)

9g.._.-_(0 )
dl'l-

(A.18)

(A.19)

into a linear state-space

8

ql

q2

+

M-IQ

lul

Figure A-2. State Space Representation.
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APPENDIX B

BERNOULLI-EULER BEAM EQUATIONS

This section describes the development of a frequency

determinant from Bernoulli-Euler beam theory which was used

to derive candidate mode frequencies and the associated

shapes. The homogeneous differential equation is presented

first, followed by a discussion of the boundary conditions

utilized. Lastly the frequency determinant is derived.

B.I Differential Equation

The transverse displacement of the beam, w(x,t), shown

in figure A-I is a function of both the spatial variable

along the beam, and time. Following the analysis attributed

to Bernoulli and Euler gives rise to following fourth order

partial differential equation.

EI_4w(_ t) - AbL4_2w(D t) = 0 (B i)

_n 4 _t 2

where: n=x/L The next step applies the separability of

equation (i) to obtain the following result;

EId4_ (_)q(t) -PAbL4_(D)dq(t) = 0 (B.2)

d_ 4 dt 2

Searching for periodic time functions of the form q(t)= e i_t

leads to the following formulation;
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EI[d__4(q) -pL4Ab_(q)_2]q(t)
dn

= 0 (B.3a)

This implies that the term in brackets must be equal to zero

for all time t. This is expressed as:

d__4(q) - 84_(q) = 0 (B.3b)
dq

where the new parameter,

84 = pL4Ab _2 (B.4)

has been substituted. This is readily solved for %(q):

%(q)=Asin(Sq)+Bcos(Sq)+Csinh(Sq)+Dcosh(Sq)

The solution for the spatial mode

four independent boundary conditions

and most obvious results from

transverse displacement at the

form;

The second condition is provided

joint, this is expressed as;

dn 2 0AbL3dq

(B.5)

function _(q) requires

be provided. The first

noting that there cannot be

pinned joint, this takes the

%(q) = 0 , for q = 0

from

for q = 0

(B.6)

a moment balance at

(B.7)

where the following substitution

dependence on the frequency;

2 = _

0AbL4

was made to eliminate the

(B.8)
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Using this boundary condition results in pinned mode

shapes for small joint inertias. Additionally, clamped mode

shapes can be determined by inputing very large joint

inertias. This provides more programming versatility than

supplying one formulation of the frequency determinant for

each type of boundary condition. The third boundary

condition is derived by resolving the shear force at the end

of the beam against the inertial forces of the payload mass.

This takes the following form;

dn 3 PAb L3

The last boundary

against the angular inertial forces of the payload.

= for n = 1
d_ 2 0AbL3dn

condition arises from a moment balance

(B.10)

B. 2 Frequency Determinant

Application of the boundary conditions to the solution

for _(_) will result in a frequency determinant for the

eigenvalues 8. Application of the first boundary condition

for transverse displacement at the joint relates two of the

constants in the solution;

B = -D

The second boundary condition

the joint forms a relation

(B.II)

balancing the moment at

between three of the of the
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constants;

2DJ0 =-PAbL383(A+C)

The shear force balance

constants of the solution;

at the

(B.12)

payload relates all the

A(Ms___8-cosS) + B(sinS+Mcn__q_8) +

=AbL = AbL

C(M__sinhS+coshS) + D(sinhS+M__coshS) = 0

AbL P AbL

(B.13)

The moment balance at the payload forms a similar relation;

-A(sinS+J_q_8) + B(J _3sinS-cosS)

AbL3 _ Ab {

+ (B.14)

C(sinhS-jp_3coshS) + D(-jp_3sinhS+coshS) = 0

Ab L3 AbL3

The expressions (B.ll- B.14) involve only the constants from

the solution for the mode function and the parameter 8. This

can be configured in matrix form as;

IAIF(8) = o
D

(B.15)

Fll=sinS+sinh8 + Jp.83(cosS-coshS) (B.16)

FI2 = sinS-sinh8 + 2cos____h8+Mp.8(cosS-coshS) +
3

J0.8

(B.17)

2sin____h8
3

J0._

F21=cosS+cosh8 - Mp._(sinS-sinhS) (B.18)
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3
F22 = -cos8 - cosh8 + 2sinh8 + Jp._ (sinhS-sinS)-3

J0._

2Jp.COshB
J0._ 3

(B.19)

Where the starred subscripts indicate

appropriate area and length terms.

frequency determinant det[F(Si)]

characteristic values for the mode

associated frequencies _i"

modification by the

The roots of the

= 0 yield the

functions #i(D), and
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APPENDIX C

LINEAR QUADRATIC REGULATOR

O

O

This appendix discusses the design and implementation

of deterministic Linear Quadratic Regulators (LQR). The

first section formulates the governing equations for the

continuous case and applies the sweep method to obtain the

Ricatti equation. This presentation is a compilation of the

material contained in Bryson and Ho's text [Cl] on optimal

control. The section discussing controller design with a

prescribed degree of stability follows Moore [C2]. The last

section considers the necessary adaptations required for the

experimental sampled data system.

C.I Continuous System

The earlier sections discussed the development of the

state-space equations for the flexible manipulator system.

This system can be represented by the general expression;

= f(x,u,t) (C.I)

The model for the

explicit expression of the

the following linear form;

= f(x) = AcX + BcU

flexible manipulator does not require

time variable and f(x,u,t) has

(C.2)



168

The goal of the process is to determine a gain vector

KT which determines the input function, u(t), as a linear

combination of the states, x(t), in an optimal manner. The

gain vector, KT, will be "optimal" in the sense of a

specific performance measure. The measures of performance

are called Performance Indices (PI), and for LQR controllers

the PI is defined in the following manner;

PI = ½[[x ex+ u Ruldt
J

Q and R represent

penalize the various

process. The next step is to adjoin

equations (C.2) to the performance index

time varying functions l(t);

PI =_ [{xTex + uTRu + lT[f _ x]}dt
z J

(C.3)

weighting matrices which selectively

states, x, and input, u, during the

the system dynamic

by the use of the

(C.4)

integrating the adjoined performance index by parts yields;

t

It0

Notation can be simplified by defining a "Hamiltonian"[Cl]

function H(x,u) for the system as;

H(x,u) = xTQx + uTRu + xTf (C.6)

Substitution into equation (C.5) yield the more compact

expression;



169

PI = ITx + [H(x,u) + iTx]dt (C.7)

t o

To find the minimizing functions, variational principles are

applied to the performance index. Small perturbations about

the optimal solution are considered;

_PI = xT6x + {[6H(x,u)

to _x

The optimal solution x(t), u(t)

and therefore the variations must

to find the functions x(t),

condition.

+ iT]dx + 6_HH_u}dt (C.8)

_x

is an extremum for the PI

be zero. The task is now

u(t) which satisfy this

C.2 Modification for Solution

Solving the set of equations (C.8) can be simplified

by noting that for a regulator the initial and final states

are known, and choosing the multiplier functions _ ;

6x = 0 , for t=t0, and t=tf (C.9)

iT = _H (C.10)
m

_X

The variation in the PI can now be expressed as;

!I6H_udt_PI = 2

The variation in the performance index must

arbitrary variations in the control function

(C.ll)

be zero for

u. This can
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O

only be true for;

6H = 0
_u

Equations (C.9,10,12) are

Equations"[Cl] for the system.

known as

(C.12)

"Euler-Lagrange

The "sweep

section as one

First a solution, S(t),

multiplier functions,

assumed;

C.3 Sweep Method

method" will be presented in the next

approach to obtain the Ricatti equation.

relating the states, x(t), to the

A(t), with the following form is

AT = Sx (C.13)

Substitution into equation (C.10) yields;

_(Sx) = -(Qx + ATA c)
_t

(C.14a)

or carrying out the indicated partial differentiation, and

substituting equation (C.13) for A;

+ SX = -(Qx + AcTSx) (C.14b)

Next, the differentiation

carried out, and the

detail;

indicated in equation (C.12) is

resulting expression examined in more

_H = 0 = uTR + ATB (C.15)
-- c
_u

This can be formulated for the input function u(t) as;
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u = -R-IBTI

This result can be substituted into equation

obtain;

(C.16)

(C.2) to

= AcX - BR1 _ Sx (C.17)

Equations (C.14,17) can be combined to form the "Matrix

Ricatti Equation" for the system.

SAc - SBR-IBTs + Q + AcTS]x= 0 (C.18a)+

This expression must hold true for arbitrary x, therefore

the expression inside the brackets must be zero;

+ SAc - SBR-IBTs + Q + AcTS = 0 (C.18b)

The "sweep method" is so named because the usual

solution technique for this problem is to sweep backward in

time from the final condition to the start. Regulators are

designed by finding the steady state solution, dS/dt equals

zero, by finding the solution matrix S of;

SBR-IBTs
SA c - + Q + AcTS = 0 (C.19)

C.4 Prescibed Deqree of Stability

In this section modification of the LQR regulator

problem to include specification of minimum stabitility in

the design process. The objective of this modification is to

design the optimal control law in such a was that the closed
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loop eigenvalues have negative real parts less than a value

(-a). This technique was first studied by Anderson and

Moore [C2], and discussed for application to flexible

manipulators by Sangveriphusiri [C3].

The modification starts by considering the following

definitions.

x'(t) = e at x(t) (C.20)

u'(t)= e at u(t) (C.21)

From these definitions, it is clear that x't) and

u'(t) will be stable (i.e. x'(t) or u'(t) _ 0 as t _ ®) only

if x(t) and u(t) decay faster than e -at .

to requiring the closed loop system

stability of at least -a.

This is equivalent

to have a degree of

Differention of equation (C.20) yields,

x' = a eatx + eatx (C.22)

Substituting equation the linearized form of the state

space model, equation (C.2), for x(t) into equation (6.20),

the modified system equation can be written as follows:

x' = (A+aI)x' + B u' (C.23)

The function inside

function is modified to

U 'T R U'+ X 'T Q x'

the integral sign

=e2at(uTR u+xTQ x)

of the cost

(C.24)
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Instead of solving the previous regulator problem,

equation (C.2), one solves the modified system of equation

(C.23) with the following modified performance index is

I_ (x 'T x'+u 'T R u')dt (C.25)Q

A similar form of solution will be expected. The

control u'(t) is the linear function of state, i.e.

u' =-Kx' (C.26)

and the matrix-valued function, K, can be evaluated from

K =R-IB T S (C.27)

where S is the solution of the Riccati equation.

Next, it can be shown that a feedback control law for

the modified problem readily yields a feedback control law

for the original problem. Substituting the definitions of

equations (C.20) and (C.21) into equation (C.26),

u =-e at u'=-e'atK(eatx) =-K x (C.28)

So that, the optimal feedback gain of the modified regulator

problem can be selected as the control law of the original

problem and the closed loop system of the original problem

will have a degree of stability of at least -a.

C.5 Sampled Data System

This section discusses translating the continuous LQR

design problem to the sampled data case which approximates

the digital implementation employed for the experiments.
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The approach taken will be transform the dynamic equations

and the weighting matrices to the discrete domain and then

reformulate the problem for solution.

Inputs to the plant from the micro-processor

controller are "held" constant between cycles of the

controller. This type of sampled data control system has an

equivalent discrete dynamic equation to the continuous plant

dynamic equation (C.2) which is the solution for continuous

equation over the time interval.The solution is given by;

xi+ 1 = AdXi + Bdui (C.29a)

where the subscript i indicates a particular sampled time,

and i+l indicates the next, and;

Ad = exp(Ac_t) (C.29b)

Bd = ] exp(Ac_)BcUidT (C.29c)

The goal of this process is to design a feedback control Kd

which determines the input sequence ui as a function of the

state vector sequence xi;

ui = KdTx i (C.29d)

The performance index expressed by equation (C.3) is

transformed from an integral into a sequence of responses

over the sampling interval At.

PI = _I{[exp(AcT)X i + (lexp(Ac_)BcUi)d_]TQ (C.3O)
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[exp(AcT)X i + (lexp(Ac_)BcUi)d_]) + uiTRui}dT

This expression can be formulated with almost

correspondence to the terms of equation (C.3);

PI = _(xiTQdx i + xiTWdu i + uiTRdu )

a direct

(C.31a)

where;

Qd = Iexp(Ac_)TQexp(Ac _)d_

Wd = 21exp(AcT)TQ[lexp(Ac_)BcUi)d_]dT

Rd = I{R
+

(C.31b)

(C.31c)

[lexp(Ac_ )BcUi)d_ ]Q[ lexp(Ac_ )BcUi)d_ ] )dT

(C.31d)

Without the cross terms

(C.31a) the sampled data

analogous to equation (C.3). A pre-filter

chosen to eliminate the cross terms;

F =_R-lw d

Another input sequence can be defined

filter gain F as;

associated with Wd in Equation

representation would be directly

gain F can be

(C.32)

utilizing the pre-

v i = Fx i + ui (C.33)
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such that;

!

Xi+ 1 = AdX + BdV i

where;

!

Ad = A d - BdF

Making one last transformation

Qd;

(C.34a)

(C.34b)

for the state penalty matrix

Qd = Qd- WdF

yields the desired equivalent

for the sampled data system.

T '
PI = Z(x i QdXi +

The solution of this problem

equation (C.34a) will yield

(C.35)

form of the performance index

viTRdv i )

subject to

a solution

(C.36)

the dynamics of

vector K_ which

coupled with the pre-filter gain F yields the desired gain

vector Kd for the original sampled regulator;

!

Kd = Kd + F (C.37)

The variational approach,

for the continuous case carry

regulator by direct analogy

continuous functions.

straightforward and will

resultant form of the steady

and Sweep-Method presented

through for the sampled data

using sequences instead of

The process is extremely

not be presented here. The

state Ricatti equation for the

sampled data regulator is;
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' IBdTSd ' 'TSdAd - SdBdRd + Qd + Ad Sd = 0 (C.38)

C.6 Ricatti Equation Solution

The Newton-Raphson, and other methods have been

formulated for this problem repeatedly, and software is

readily available. Two implementations were utilized for

this work to provide cross checking. Routines extracted from

the ORACLS[C4], and Control-C[C5] software packages were

executed on the flexible arm model.
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APPENDIX D

KALMAN FILTER DEVELOPMENT

This section discusses the development of a Linear

Quadratic Gaussian Regulator (LQGR) this is more commonly

referred to as a Kalman Filter [DI-2]. The basic relations

and solution technique will be discussed as was done in

appendix C for the deterministic regulator. For brevity only

the sampled data case will be developed here.

D.I Governing Equations

Consider the dynamic equations for the system now

subject to the introduction of a zero mean gaussian noise w i

to the plant and v i to the measurement Yi"

xi+ 1 = Ax i + Bu i + w i (D.I)

Yi = Cxi + vi (D.2)

The noises are uncorrelated and have covariances given by;

T

E[wiw j ] = Rw

E[vivjT] = Rv

(D.3)

(D.4)

select theThe objective of this formulation is to

measurement gains for the full state observer depicted in

figure D-I in an optimal manner.

Many notational definitions are required to form a

tractable formulation of the Kalman Filter equations [D3].



179

The definitions are summarized

reference.

in table D-I for easy

Table D-I. Summary of Kalman Filter Notation

Symbol Comment

x

M

P

Plant state vector
Estimate of the Plant state
with measurement update
Estimate of the Plant without
measurement update
Error between plant state and
estimate e = (x - x)
Error between plant state and
estimate _ = (x - _)
Covarian_e of error
M = E[_ ]

Covarian_e of error
P = E[_ ]

Plant ,...........

...... 1I
I

u(l_ _(1÷1)

', I" I :
, 1
!

/
Estlmator

X(|÷l) ___) ,

y<i+1)

Figure D-I. Block Diagram for Kalman Filter
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Consider the error e for an estimator constructed with

actual plant dynamics;

el+ 1 = xi+ 1 - xi+ 1 = Ad(X i - xi) + BdW i (D.5)

Then the covariance of the error without the measurement

update Mi+ 1 is;

Mi+ 1 = E[AdeieiTAd T + BdWiwiT ] (D.6a)

Or in more compact notation;

Mi+ 1 = AdPiAd T + BdRwBd T (D.6b)

Consider a performance index for the system with the

following form;

PI = i/2Z[eiTM-lie i + (Yi-Cxi)TRv-li(Yi-Cxi)] (D.7)

The task is again to find the sequences which minimize the

performance index, therefore, we wish to find the conditions

which will yield the sequences. Examining the effect of

small arbitrary variations in the state vector xi;

_PI = _xi[M-liei + cTRv-li(Yi-Cxi)] (D.8)

For the sequences to minimize the index the coefficient of

the variation must vanish;

m

Mml(xi-xi ) + cTR v li(Yi-Cx i) = 0 (D.9)

This can be organized in terms of the plant state;

(M-li+CTRv-liC)xi = M-lix + CTRv-liYi (D.10)

O
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O

forming the the feedback grouping Yi-Cxi results in;

(M-li+CTRv-lic)xi = (M-li+CTRv-lic)xi + (D.II)

CTRv-l(yi-Cxi )

Dividing through by the coefficient of the state, xi,

provides a relation between the estimate without update, xi'

the measurement, and the state which minimizes the

performance index.

xi = x i + Li(Yi-Cx i) (D.12a)

where a Kalman gain, L, has been introduced;

L i = (M-Ii+CTRv-lic)-ICTRv-li (D.12b)

Thus an optimal estimate, xi' of the state can be formed

using the measurement, Yi' and the estimate without update,

xi' which satisfies the same conditions;

xi = x i + Li(Yi-Cx i)

It is of interest to

gain as;

where the grouping;

separate

(D.13)

the terms forming the Kalman

*iCTRv-liL i = P (D.14a)

P i = (M-li+CTRv-li c)-I (D.14b)

has been formed. It will now be shown that the grouping

shown in equation (D.14b) is in fact the covariance matrix,

Pi" The error for the estimate with update, e, can be

written as;
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ei = xi-x i = xi-x i +

P*iCTRv-li[vi-C(xi-xi ) ]

(D.15a)

Rearranging terms, and using the notation ei for the error

before measurement update;

*iCTRv-lic) ~ iCTRv-liv ie i = (I + P ei + p* (D.15b)

Then the expected values can be determined;

Pi = (I+P*iCTRv-lic)Mi(I+P*iCTRv-lic)T + LiRviLi T (D.16)

Next, consider the inverse of equation (D.14b);

* -I M-li+CTRv-li CP i = (D.17)

Premultiplication of equation (D.17) by

postmultiplication with M i yields;

* *iCTRv-licMiMi = P i + P

P*i' followed by

(D.18a)

or;

*iCTRv-lic *(I+P )Mi = P i (D.18b)

The result, equation (D.18b) can be substituted into

equation (D.16) to eliminate the M i term;

* *iCTRv-lic)T LiRviLi TPi = P i (I+P + (D.19)

This can be regrouped using equation (D.14a) for the Kalman

gain twice;

* * T -i iPi = P i(I+Li C)T + (P iCRv )RviLi T (D.20a)

,finally after some simplification;

* *icTLi T *icTLi TPi = P i - P + P (D.20b)
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This yields the needed result;

Pi = P i

Now the Kalman gain, Li, can be

covariance Pi;

L i = PiCTRv-1 i

This completes

equations. The

(D.20c)

expressed in terms of the

the derivation of

next section will

solution of the steady state gain gain L.

(D.21)

necessary Kalman Filter

discuss a method for

D.2 Solution Method

Iterative solutions using expressions

converge very slowly for discretizations

for Pi and Mi+ 1

of the plant for

short time intervals. Formulation of the problem into a

Ricatti equation suitable for the same Newton-Raphson

algorithm employed for the deterministic regulator covered

in appendix C is very desirable in terms of convergence

properties and software usage.

To achieve this goal, equation (D.15) is rewritten;

ei+ 1 = (Ad-LiC)e + Liv i + BdW i (D.22)

The expected value can then be determined;

Pi+l = (Ad-LiC)Pi(Ad-Lic)T + LiRvLi T + BdRwBd T (D.23)

Steady state is reached when

gives the necessary form;

T
P = (Ad-LiC)Pi(Ad-LiC)

Pi+l is the same as Pi' this

+ LiRvLiT + BdRwBd T (D.24)
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Combining this with expression

completes the process.

(D.21) for the Kalman gain
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APPENDIX E

EXPERIMENTAL APPARATUS

This section of the thesis describes the the

experimental manipulator system. Manufacturers,

specifications, experimental measurements made to assure the

performance parameters of key

diagrams identifying the actual

presented.

The experimental hardware is

functional areas, and identification

components, and detail

electrical connections are

separated into five

and description of the

hardware components will proceed sequentially through the

functional groups. Electrical schematics for components will

be given presented in the functional groups, but

interconnections for subsytems will conclude the appendix.

The following list identifies the functional hardware

groupings:

Flexible Manipulator

Sensors/Signal Conditioning

Analog to Digital Conversion

Micro-Processor System/Digital to Analog

Conversion

Torque Motor/Servo-Amp
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The microprocessor is discussed in appendix

controller software.

E.I Flexible Manipulator

The first piece of hardware

actual flexible link, and payload.

scale for the experiment. The arm

F with the

to be discussed is the

This component sets the

is a four foot aluminum

beam with the section oriented so that axis of increased

flexibility is in the horizontal plane. The manipulator

mounted in its base with sensors is shown in figure E-I.

The payload is provisioned for the addition of weights

giving it a range of five to one in increments of one

quarter of the base amount. Table E-I lists physical

properties, and dimensions for the beam, and payload.

/
TORQUE M0[0R

FLEXIBLE MEi,IBER

PAYLOAO /

Top view.

/ JOINT ANGLE SENSOR

{l _ TORQUE MOTOR

/ ,/_'-'-'- , STRAIN GAGES/

PAYLOAD --

MOUNTING BASE

Figure E-1. Manipulator with Sensors.
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E.2 Sensors

The manipulator and base

sensors to obtain information

flexible system. This section

measurement systems.

E.2.1 Joint Angle Sensor

Rotation of the joint is measured

rotational potentiometer connected to a

are equipped with several

about the state of the

discusses the individual

by the use of a

high impedance

signal amplifier. This is depicted in figure E-2. Ninety

degrees of rotation is scaled to +/-5 volts DC by use of the

signal amplifier.

E.2.2 Joint Angle Velocity

An Inland motor tachometer is utilized to measure the

angular velocity of the joint. The tachometer is also

connected to a signal amplifier, this provides analog signal

scaling and isolates the tachometer from line loads, as well

as reducing noise.

Table E-I. Physical Properties of the Beam

and Payload

Beam

Length = 48 in.

Section: 3/16 x 3/4 in.

Material:Alumintun

EI Product= 4120

Alloy: 6065-T6

Payload

Material: Aluminum

Diameter= 1.25 in.

Alloy: 6065-T6

Thickness= .75 in.
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Amplifier

', _ I,'
" t--.J/

I=otentJorneter

I To A/D

Converte -.

Figure E-2. Angle Sensor.

CL

K.

E
O¢_-

h .... I .... i .... I .... I ' ' ' " I .... I .... I

1 2 3 4 5 6 7

Anclutor Velocity (rad/sec)

Figure E-3. Measured Tachometer Performance.
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The manufacturers specifications for the tachometer

are listed in table E-2. Measurements were made of the

tachometer to verify

constant. The joint was

several revolutions, the

velocity computed. The

Computation of the slope

sec/radian, relatively close

1.0volt-sec/rad.

E.2.3 Strain gages

State feedback using

reconstruction (chapter V),

based on measurement of

the

rotated

output

data is

provides

to the

manufactures voltage/speed

at a constant velocity for

voltage measured, and the

presented in figure E-3.

a constant,.9volt-

specified amount,

modal variables obtained from

and estimation (chapter VI) is

strain due to bending at the

surface of the beam. Strain at a point on the surface of the

beam has contributions from axial stress, torsional stress,

and out of plane bending. Additionally, strain gages

generate low level signals, and are sensitive to

temperature.

The specific

consisted of a four

implementation for this experiment

active element bridge commonly used to

measured planar bending of beams [El]. This configuration is

much less sensitive to stresses due to torsion, extension,

transverse bending

bending than an

compensated.

and provides higher signal levels in

individual gage. Temperature is also
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Figure E-4 depicts the mounting arrangement for the

active gages in the bridge at a single measurement point.

The performance of the bridges was examined by locking

the joint and deflecting the endpoint in fixed increments.

The result is shown figure E-5. This result was compared

against linear elastic theory, allowing for calibration of

the bridge, and amplifiers in one step.

The gages are driven by a

control circuit (Honeywell Accudata

change in output is amplified

before being connected to the

converter.

constant voltage bridge

105), and the resultant

(Honeywell Accudata 122)

by the analog to digital
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Strain Gcge ...__ v+

Figure E-4. Strain Gage Implementation.

O Gage at Midpoint_.= .... ..... ..._--_--

_ .........o........ ._"

_I "_ Gage a Base
.... l .... I " ' ' " I ' " ' ' | ' • ' ' I .... I " ' " ' f ' ' ' ' I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Endpoint Deflection (inches)

Figure E-5. Bridge/Amplifier Response.
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E.3 Torque Motor/Servo-Amp

The digital to analog

signals proportional to the

commutated DC torque motor was

configured in current mode. This

driven through the amplifier

converter generated voltage

desired motor torque. The

driven by a servo-amp

meant that a current was

load (DC torque motor)

proportional to the input voltage. This implementation uses

a sense resistor on the output terminal of the motor to

monitor current. The connections and configuration for this

mode of operation are shown in figure E-6.

(DMf_Orl

INPUT
o

D C SIqVO- NIP

COMt°OM SF.USE.:.

CL_RFNT SENSE RESISTCR

± SENSF. LIHE

I TCR QUF.

MOTOR

Figure E-6. Motor/Amplifier Current Mode Configuration.
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APPENDIX F

Q

O

O

CONTROLLER IMPLEMENTATION

This section covers the issues and structures of the

real time controller implementation, key hardware elements,

and software. Specific features, and methods written into

the software which were particularly useful for this system

are discussed. Additionally, the actual code utilized on the

IBM Series/l to implement the LQR controller designs of

chapter 7 in real time is presented here as an example for

future programmers. The basic system structure and utilities

are described as well as the process required to compile,

link, and execute the software.

F.I Software Development

The software evolved over the course of the controller

implementations into a compromise between initial

objectives, and performance requirements. Throughout the

software design the following goals were used as guides:

• Intelligibility - easily understandable source

code, high level of documentation, High level

language.

• Modularity - Separation of code into distinct

functional modules, subroutines etc., common

to multiple controllers.

• Operator Input/Output - Terminal supported

para_neter adjustment.
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0

0

• Speed - Fast execution times, resulting in short

cycle times which reduce the impact of

discretization

Applying these goals to a real-time implementation can

not be accomplished in an abstract form. Specific features

of the hardware, and available software compatible with the

hardware become extremely important in making software

generation.

Initially the controllers were implemented in Fortran,

this is a high level language familiar to most engineering

students. Difficulties were encountered by the vary system

transparency afforded by a high level language. System

overhead primarily due to provisions for multi-level, multi-

tasking options resulted in execution speeds far short of

processor capabilities. Additionally special features of the

analog input and output, and terminal devices were not

easily accessed. The combination of these factors led to

abandonment of Fortran as the language for implementation.

The second generation of control software was written

in IBM's system language, Event Driven Language (EDL). EDL

is a moderately high level language providing IF-THEN, DO-

WHILE structures, as well as subroutines support, yet

closely resembles assembly language statements. EDL is also

tailored to the specific hardware elements providing full

use the device features. The difficulty encountered in this

iteration of the controllers was primarily speed of

O
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execution. Although EDL provided better access to the

hardware devices, system overhead was still extensive and

execution times were still much slower than indicated by

summing processor instruction times.

The third generation of software was a hybrid of EDL

and Assembly languages. EDL was utilized for controlling the

system interfaces, and the computations were executed in

assembly language routines. The execution times for this

software hybrid came close to realizing the capabilities of

the processor. This compromise leaned more to the

performance requirements and modularity goals fo_ the

software, and less toward the intelligibility goal. However,

with alot of annotation, the time required for

familiarization is minimized.

F.2 Hardware Features

Special hardware functions were found to be extremely

helpful in implementation of the control laws. Hardware

floating point computations were used throughout the

controller implementations. Depending upon the control law

design procedure and the input quantities being investigated

at any one time, the state gains varied a full order of

magnitude. Use of floating point instructions avoided

extensive rescaling required with integer computations to

retain high accuracy and resolution.

Another feature found to be extremely useful in
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investigating control strategies, was static screen support

for menu driven parameter adjustment using the terminal.

Many parameters needed to be input to the system and updated

for the various controllers. Static screens supported menu

type data entry providing easy access, and verification of

the memory locations holding key parameters.

F.3 IBM Series/l

The IBM Series/l utilized for the experiments is a

micro-processor based computing system supporting several

processors, and a wide variety of peripheral devices. For a

complete list of processors, cards, and subsystems supported

refer to "Series/1 Digest"[Fl]. Only the specific

configuration used in the experiment will be discussed here.

There are several unique features to the Series/l in

addition to the floating point hardware and terminal support

mentioned above. These additional features were not required

for the sequential implementation of the controllers, but

will be mentioned to provide reference to the available

resources. The processor has separate I/O, and memory

channels, 213 programable interrupts from the I/O channel,

hardware levels for rapid execution interruptand four

processes.

The capabilities, and hardware of the Series/l

utilized for the experiments are summarized in table F-1.
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Table F-1. Series/l Configuration

Micro-processor
Cycle Time
Instruction set
Storage
Floating Multiply
I/O Channel

Model 4955-F, 16 bit

220 nano-sec

160 basic set

512 kilo-byte
19 micro-sec

256 addressable, 1.65 mega-

byte/sec throughput.

Mass Storage
Hard Disk

Floppy

Model 4964

64 mega-byte

256 kilo-byte

Input and Output
Analog Input

Sensor I/O no. 4982

Solid State

16 differential points,9600

samples/sec

Reed Relay

8 differential points,200

samples/sec

Analog Output
Solid State

2 differential points,

20 micro-sec settling time.

Digital I/O
Isolated, 16 points

Non-Isolated, 16 points

Communications

Serial Async. 8 ports, ASCII, EBCDC

F3.1 Utilities and Proqram Preparation

The Series/1 supports an IBM programming

language/operating system called the Event Driven Executive,

which refers to its ability to

interrupt requests. This comes with

programs for system generation,

management. Additionally, editing,

identify and service

a lot of useful utility

diagnostics, and data

compiling, linking, and
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interactive debugging is well supported.

All the utility programs can be executed individually

using the relocating

program, $SMMAIN,

with which the

loader

which

utility

Documentation on the utility

contained in "Operator

Reference"[F2]. An example of

routine $L, or a "mothering"

provides menu driven interfaces

routines can be invoked.

programs and there use is

commands and Utilities

the procedure for compiling

will be given

will follow the source codes for each controller.

with each program, and a linking procedure

F.4 Deterministic Regulator

The source code for the regulator is broken into

several assembly language subroutines joined together.by a

driver/initialization routine written in IBM's Event Driven

Language EDL. The routines, their names, and functions are

summarized below:

LUENEDX(EDL)

CONV(ASM)

UPDATE(ASM)

CNTRL(ASM)

EST(ASM)

Drive parameter initialization menus,

call the assembly level subroutines,

provide interrupt capability

onvert input values, reconstruct

modal variables.

Update state estimate.

Execute control law and convert

output

Estimate state variables.
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F.5 Program Generation

This section discusses the process required to

generated executable code for the Series/1. These steps are

straightforward, typical of all processors, but may be less

transparent on the Series/l than some programmers are

familiar with. The steps consist of source code generation

using a line or screen editor. The Series/l provides a

reasonable screen editor $FSE which can be loaded directly,

or via the system manager. Fortran, EDL, and Assembly code

source code can all be generated with this editor. The

source modules must be compiled individually into object

code. The system is provisioned with compilers for all three

languages, SFORT for Fortran, SEDXASM for EDL, and $SIASM

for the Assembly source code which can again be invoked

directly at the system prompt, or with the session manager.

The compiled objects must be linked with each other,

and system library files into a relocatable module for

execution. The modules are linked with the utility program,

$EDXLINK, which as with the other system utilities can be

loaded directly or with the session manager.

The program generation sequence is summarized in table

F-2, for the case of the deterministic regulator. The source

files, temporary holding files set aside for the object

modules, and linking instructions are included.
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Table F-2. Program Generation Sequence

Step i. Generate Source Code Modules (Editor - $FSE,EDX003)

Event Driven Language Driver - LUENEDX,GORDON

Assembly Code Modules - CONVI,GORDON
- UPDATE,GORDON

- CNTRL,GORDON

- EST,GORDON

Step 2. Assemble Object Modules

Event Driven Language Modules (Compiler - $EDXAS
M,EDX003)

Compile LUENEDX,GORDON to ASMWKI,GORDON

Assembly Language Modules (Compiler - $SlASM,EDX003)

Compile CONVI,GORDON to ASMWK2,GORDON

UPDATE,GORDON ASMWK3,GORDON

CNTRL, GORDON ASMWK4,GORDON

EST,GORDON ASMWK5,GORDON

Step 3. Link Executable Module (Linker - $EDXLINK,EDX003)

Assembled Object Modules

Include ASMWKI,GORDON

Include ASMWK2,GORDON

Include ASMWK3,GORDON

Include ASMWK4,GORDON
Include ASMWK5,GORDON

Access System Library

Autocall $AUTO,ASMLIB

Perform Linkage
Link EXEC,GORDON Replace End

Step 4. Execute Program
At System Prompt Utilize Relocating Loader on
Executable Module

$L EXEC,GORDON

Then Provide Input, and Output Data Files at Prompts

INI0,GORDON

INI0,GORDON (Write Modifications to Same

File)

F.5.1 Routine LUENEDX

This file can be compiled using the utility routine

SEDXASM. This routine is most easily accessed through the

program preparation facility of $SMMAIN. One word of

caution, destination files for the compiled objects must be

allocated prior to compilation, or the object will not be

stored. To avoid generation of excess object files on the

hard disk, ASMWK1 on volume CONTROL was allocated as the
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typical destination for the compilation of LUENEDX.
(START OF FILE LUENEDX)
************************************************************

***** ***

* EDX DRIVER PROGRAM WITt'I INITIALIZATION ROUTINE,._ID I/O ***
***** ***

************************************************************

REDOO PROGRAM START,DS=((INPUT,??),(OUTPUT,??)),FLOAT=YES

KEYBOARD INTERUPT ROUTINE DEFINITION TO STOP CONTROLLER

ATTNLIST (X,QUIT)

QUIT MOVE FLAG, 1
ENDATTN

EXTRN

EXTRN

TERM IOCB

EST,CONV,UPDATE,CNTRL

$IMOPEN,$IMDEFN,$IMPROT
SCREEN=STATIC

* DEFINE THE ANALOG INPUT AND OUTPUT PORTS

* '_IETA,STRAINI,STI_IN2,VELOCITY
****************************_****************_****_********

IODEF

IODEF

IODEF

IODEF
.

* THE DESIRED

IODEF

* DITHER SIGNAL

IODEF
.

* THE TORQUE
.

IODEF
.

* SI GNAL

ANGLE SENSOR

AII,ADDRESS=63,POINT=0,RANGE=5V

STRAIN GAGES

AI2,ADDRESS=63,POINT=I,RANGE=500MV

AI3,ADDRESS=63,POINT=2,RANGE=500MV

VELOCITY SENSOR

AI4,ADDRESS=63,POINT=3,RANGE=5V

END POINT INPUT

AI5,ADDRESS=63,POINT=4,RANGE=5V

AI6,ADDRESS=63,POINT=5,RANGE=5V

OUTPUT A/D DEVICE

AOI,ADDRESS=64,POINT=0

OUTPUT PORT
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START
LMENU

LINPUT

CALL THE PREPARED SCREEN IMAGE

EQU
CALL

ENQT
CALL

TERMCTRL

$IMOPEN,(DSNAMEI),(DISKBUF),(TERMTYPE)
TERM

$IMPROT,(DISKBUF),(FTABLE)
DISPLAY

READ THE SELECTION INTEGER CHOICE

PRINTNUM

PRINTEXT
TERMCTRL

WAIT

GETVALUE

IF
IF

IF

IF

IF

IF

IF

IF

IF

GOTO LMENU

ZERO ,FORMAT= (1 ,0 ,I ),LINE=I 6 ,SPACES=26
LINE=16 ,SPACES=26
DISPLAY

KEY

CHOICE, FORMAT= (1,0, I ),LINE=I 6, SPACES=26
(CHOICE, EQ, 1 ), GOTO, LINPUT

(CHOICE,EQ,
(CHOICE,EQ,

(CHOICE,EQ,

(CHOICE,EQ,

(CHOICE,EQ,

(CHOICE,EQ,

(CHOICE,EQ,

(CHOICE,EQ,

2),GOTO,LGAIN

3),GOTO,LOBSVR

4),C-OTO,LINCOEF
5),GOTO,LUPDATE

6),GOTO,LZERO

7),GOTO,LOUTPT

8),GOTO,LXQT

9),GOTO,LEND

ROUTINE TO INPUT DATA SET OF PARAMETERS

CALL THE PREPARED SCREEN

I"TCA_

ENQT
CALL

TERMCTRL

$IMOPEN,(DSNAME3),(DISKBUF),(TERMTYPE)
TERM

$IMPROT,(DISKBUF),(FTABLE)
DISPLAY

READ THE INPUT DATA SET NAME AND VOLUME

READ

MOVE

GOTO

DSl,DATBUF,2

FN,DATBUF,(256,BYTES)
LMENU

ROUTINE VIEW/ALTER GAIN VECTOR

CALL THE PREPARED SCREEN
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LGAIN CALL
ENQT
CALL
TERMCTRL

$IMOPEN,(DSNAME2),(DISKBUF),(TERMTYPE)
TERM
$IMPROT,(DISKBUF),(FTABLE)
DISPLAY

FILL IN THE DEFAULTVALUES

PRINTNUM
PRINTNUM
PRINTNUM
PRINTNUM

PRINTNUM
PRINTNUM

FN+56,FORMAT=(12,6,E),TYPE=F,LINE=3,SPACES=40

FN+60,FORMAT=(12,6,E),TYPE=F,LINE=5,SPACES=40

FN+64,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=40
FN+68,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=40

FN+72,FORMAT=(12;6,E),TYPE=F,LINE=II,SPACES=40
FN+76,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=40

POSITION THE CURSOR,WAIT FOR THE ENTER KEY, GET THE
VALUE

PRINTEXT

TERMCTRL

WAIT

GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE

GOTO

LINE=I4,SPACES=33
DISPLAY

KEY

FN+56,FORMAT=(12,6,E),TYPE=F,LINE=3,SPACES=40

FN+60,FORMAT=(12,6,E),TYPE=F,LINE=5,SPACES=40

FN+64,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=40

FN+68,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=40

FN+72,FORMAT=(12,6,E),TYPE=F,LINE=II,SPACES=40

FN+76,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=40
LMENU

LOBSVR

ROUTINE TO VIEW/ALTER OBSERVOR PARAMETERS

ENQT
TERMCTRL

DEQT
CALL

ENQT
CALL

TERMCTRL

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM
PRINTNUM

PRINTNUM

PRINTNUM,

PRINTNUM
PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM
PRINTNUM

TERM

BLANK

$IMOPEN,(DSNAME4),(DISKBUF),(TERMTYPE)
TERM

$IMPROT,(DISKBUF),(FTABLE)
DISPLAY

FN,FO_MAT=(12,6,E),TYPE=F,LINE=7,SPACES=4

FN+4,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=21

FN+24,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=49
FN+28,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=4

FN+32,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=21

FN+52,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=49
FN+8,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=8

FN+I2,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=25

FN+I6,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=42

FN+20,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=59

FN+36,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=8

FN+40,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=25

FN+44,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=42

FN+48,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=59
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PRINTEXT

TERMCTRL

WAIT
GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE
GETVALUE

GETVALUE

GETVALUE

GETVALUE
GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE

DEQT
GOTO

LUPDATE

LINE=I9,SPACES=30
DISPLAY

KEY

FN,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=4

FN+4,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=21
FN+24,FORMAT=(12,6,E),TYPE=F,LINE=7,SPACES=49

FN+28,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=4

FN+32,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=21

FN+52,FORMAT=(12,6,E),TYPE=F,LINE=9,SPACES=49

FN+8,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=8

FN+I2,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=25

FN+I6,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=42
FN+20,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=59

FN+36,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=8

FN+40,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=25

FN+44,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=42

FN+48,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=59

LMENU

ENQT
TERMCTRL

DEQT
CALL

ENQT
CALL

TERMCTRL

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM
PRINTEXT

TERMCTRL

WAIT
GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE
GETVALUE

GETVALUE

GETVALUE

DEQT
GOTO

.

* ROUTINE
*

LINCOEF ENQT

TERM

BLANK

$IMOPEN,(DSNAME5),(DISKBUF),(TERMTYPE)
TERM

$IMPROT,(DISKBUF),(FTABLE)
DISPLAY

FN+I48,FORMAT=(12,6,E),TYPE=F,LINE=13,SPACES=8

FN+I52,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=8

FN+I56,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=25

FN+I60,FORMAT=(12,6,E),TYPE=F,LINE=IS,SPACES=25

FN+I64,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=42

FN+I68,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=42

FN+172,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=59

FN+I76,FORMAT=(12,6,E),TYPE=F,LINE=15,SPACES=59
LINE=I9,SPACES=30

DISPLAY
KEY

FN+I48,FORMAT=(12,6.,E),TYPE=F,LINE=I3,SPACES=8

FN+I52,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=8

FN+I56,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=25

FN+I60,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=25

FN+164,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=42

FN+I68,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=42

FN+I72,FORMAT=(12,6,E),TYPE=F,LINE=I3,SPACES=59
FN+I76,FORMAT=(12,6,E),TYPE=F,LINE=I5,SPACES=59

LMENU

TO VIEW/ALTER INPUT COEFFICIENTS

TERM
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TERMCTRL
DEQT
CALL
ENQT
CALL

TERMCTRL

BLANK

$IMOPEN,(DSNAME6),(DISKBUF),(TERMTYPE)
TERM

$IMPROT,(DISKBUF),(FTABLE)
DISPLAY

FILL IN THE DEFAULT VALUES

PRINTNUM

PRINTNUM

PRINTNUM
PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM

PRINTNUM

PRINTEXT

TERMCTRL

WAIT

GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE

GETVALUE
GETVALUE

TERMCTRL

DEQT
GOTO

FN+80, FORMAT=( 12,

FN+84, FORMAT=( 12,

FN+88, FORMAT=( 12,

FN+ 92, FORMAT= (12,6

FN+96 ,FORMAT=( 12,6

FN+I00 ,FORMAT=( 12,6 ,E

FN+104 ,FORMAT=( 12,6 ,E

FN+I08 ,FORMAT=( 12,6 ,E
LINE=21, SPACES=34
DI SPLAY

KEY

FN+80, FORMAT=( 12,

FN+84 ,FORMAT=( 12,6

FN+ 88, FORMAT= (12,

FN+92 ,FORMAT=( 12,6

FN+96 ,FORMAT=( 12,6

FN+100, FORMAT= (12,6
FN+I 04 ,FORMAT=( 12,6 ,E

FN+I 08 ,FORMAT=( 12,6 ,E
BLANK

6,E),TYPE=F,LINE=5,SPACES=25

6,E),TYPE=F,LINE=7,SPACES=25

6,E),TYPE=F,LINE=9,SPACES=25

,E),TYPE=F,LINE=II,SPACES=25

,E) LINE=I3,SPACES=25

) LINE=I5,SPACES=25

) LINE=I7,SPACES=25

) LINE=I9,SPACES=25

,TYPE=F,

,TYPE=F,

,TYPE=F,

,TYPE=F,

6,E),TYPE=F,LINE=5,SPACES=25

,E),TYPE=F,LINE=7,SPACES=25

6,E),TYPE=F,LINE=9,SPACES=25

,E),TYPE=F,LINE=I1,SPACES=25

,E),TYPE=F,LINE=I3,SPACES=25

,E),TYPE=F,LINE=I5,SPACES=25
),TYPE=F,LINE=I7,SPACES=25

),TYPE=F,LINE=I9,SPACES=25

LMENU

* ROUTINE TO OUTPUT SELECTED PARAMETERS

LOUTPT ENQT
TERMCTRL

DEQT
CALL

ENQT
CALL

TERMCTRL

MOVE

WRITE

DEQT
GOTO

TERM

BLANK

$IMOPEN,(DSNAMES),(DISKBUF),(TERSYFIPE)
TERM

$IMPROT,(DISKBUF),(FTABLE)
DISPLAY

DATBUF,FN,(256,BYTES)

DS2,DATBUF,2

LMENU

****** SYSTEM INITIAL ZEROING ROUTINE

LZERO CALL $IMOPEN,(DSNAME7),(DISKBUF),(TERMTYPE)
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ZZZZ

ENQT TERM

CALL $IMPROT,(DISKBUF),(FTABLE)
TERMCTRL DISPLAY

SBIO AII,AN

SBIO AI2,AN+2

SBIO AI3,AN+4

SBIO AI4,AN+6

CALL THE CONVERSION ROUTINE TO TRANSFORM THE INPUTS

USER CONV,PARM=(AN,FN)

PRINTNUM FN+II2,FORMAT=(12,6,E),TYPE=F,LINE=4,SPACES=30

PRINTNUM FN+I24,FORMAT=(12,6,E),TYPE=F,LINE=6,SPACES=30

PRINTNUM AN+2,FORMAT=(6,0,I),LINE=8,SPACES=30

PRINTNUM AN+4,FORMAT=(6,0,I),LINE=I0,SPACES=30

ZERO,FORMAT=(I,0,I),LINE=I2,SPACES=31
LINE=I2,SPACES=31
DISPLAY

KEY

ZMI,FORMAT=(I,0,I),LINE=I2,SPACES=31
(ZMI,EQ,I),GOTO,LMENU
ZZZZ

PRINTNUM

PRINTEXT

TERMCTRL

WAIT

GETVALUE

IF

GOTO

DEQT
CALL

ENQT
CALL

DEQT

LXQT
STRCN $IMOPEN, (DSNAME9), (DISKBUF), (TERMTYPE)

TERM

$IMPROT, (DI SKBUF ), (FTABLE )

***** REDUCED DYNAMIC ORDER LUNNBERGER OBSERVER/CONTROLLER

*

*

LOOP1

THE SECTION WHICH READS THE ANALOG INPUT VALUES

SBIO AII,AN

SBIO AI2,AN+2

SBIO AI3,AN+4

SBIO AI4,AN+6

SBIO AI5,AN+I0

SBIO AI6,AN+I2

CALL THE ASEMBLERVERSION OF THE ESTIMATOR AND THE
CONTROLLER

USER

USER

USER

SBIO

USER

IF

CONV,PARM=(AN,FN)

UPDATE,PARM=(AN,FN)

CNTRL,PARM=(AN,FN)

AOI,AN+8

EST,PARM=(AN,FN)

(FLAG,NE,0),GOTO,RTN
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RTN

LEND

GOTO LOOP1

SBIO AOI,ZERO

MOVE FLAG,0

ENQT TERM
TERMCTRL BLANK

GOTO LMENU

PROGSTOP

FLAG

ZERO

CHOICE

ZMI

INL
AN

INSC
*JOINT

*STRAIN1

*STRAIN2

*VEL

*TORQ
*DESANGLE

************WWW*WWWW*****WWWWWWWWWWWWWWWW*WWWW************

DATA F'0'

DATA F'0'

DATA F'0'

DATA F'0'

DATA F'0'
DATA 12F'0'

DATA F'125'

EQU AN
EQU AN+2

EQU AN+4

EQU AN+6

EQU AN+8
AN+f0

*DITHER SIGNAL AN+I2

* AM+14

FN DATA 64E'0.0'

*FII EQU FN OBSERVER VELMODI DEPENDENCE LAST VELMODI

*FI2 EQU FN+4 " " " " VELMOD2

*Gll EQU FN+8 " " " " ANGLE

*GI2 EQU FN+I2 " " " " MODI
*GI3 EQU FN+I6 " " " " MOD2

*GI4 EQU FN+20 " " " " JOINTVEL

*BI EQU FN+24 " " " " TORQUE

*F21 EQU FN+28 OBSERVOR VELMOD2 DEPENDENCE LAST VELMODI

*F22 EQU FN+32 " " " " VELMOD2

*G21 EQU FN+36 " " " " ANGLE

*G22 EQU FN+40 " " ,4 " MODI

*G23 EQU FN+44 " " " " MOD2

*G24 EQU FN+48 " " " " JOINTVEL

*B2 EQU FN+52 " " " " TORQUE

*KI EQU FN+56 JOINT ANGLE GAIN

*K2 EQU FN+60 MOD 1 AMPLITUDE GAIN

*K3 EQU FN+64 MOD 2 AMPLITUDE GAIN

*K4 EQU FN+68 JOINT VELOCITY GAIN

*K5 EQU FN+72 MOD 1 VELOCITY GAIN

*K6 EQU FN+76 MOD 2 VELOCITY GAIN
*CONVI EQU FN+80 JOINT ANGLE INPUT CONVERSION

*CONY2 EQU FN+84 STRAIN 1 MODI INPUT CONVERSION
*CONY3 EQU FN+88 STRAIN 2 MODI INPUT CONVERSION

*CONY4 EQU FN+92 STRAIN 1 MOD2 INPUT CONVERSION

*CONY5 EQU FN+96 STRAIN 2 MOD2 INPUT CONVERSION
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*CONV6 EQU
*CONV7 EQU
*CONV8 EQU
*FTHET EQU
*FMODI EQU
*FMOD2 EQU
*FOMEGEQU
*ESTVI EQU
*ESTV2 EQU
*TORQ EQU
*OUTPT EQU
*ZERO EQU
* EQU
* EQU
* EQU
* EQU
* EQU
* EQU
* EQU
* EQU
* EQU
* EQU
DATBUF BUFFER

BDS BUFFER

DISKBU BUFFER
FTABLE BUFFER

RDATI BUFFER

INSET TEXT

OUTSET TEXT

DSNAMEI TEXT

DSNAME2 TEXT

DSNAME3 TEXT

DSNAME4 TEXT

DSNAME5 TEXT

DSNAME6 TEXT

DSNAME7 TEXT

DSNAME8 TEXT

DSNAME9 TEXT

TERMTYPE DATA

MEAS DATA

ENDPROG
END

FN+I00

FN+I04

FN+I08

FN+II2

FN+II6

FN+I20

FN+I24

FN+I28

FN+I32

FN+I36
FN+I40

EN+I44
FN+I48

FN+I52

FN+I56 "

FN+I60 "

FN+I64 "
FN+I68 "

FN+I72 "

FN+I76 "

FN+I80

FN+I84

256, BYTES

258,BYTES

1024,BYTES
15,WORDS

TACHOMETER INPUT CONVERSION

TORQUE OUTPUT CONVERSION
INPUT SIGNAL CONVERSION

JOINT ANGLE FLOATING POINT

AMPLITUDE MODEl FLOATING POINT

AMPLITUDE MODE2 FLOATING POINT

JOINT VELOCITY FLOATING POINT

ESTIMATED MODI VELOCITY FLOATING POINT

ESTIMATED MOD2 VELOCITY FLOATING POINT

TORQUE FLOATING POINT

UPDATE GAIN L1
" " L2

" L3

" L4

" L5

" L6
" L7

" L8

512,BYTES,INDEX=INDXl
LENGTH=20

LENGTH=20

MENUSCR,GORDON'

GAINSCR,GORDON'

INPUTSCR, GORDON'
OBSVRSCR,GORDON'

UPDATSCR,GORDON'

COEFSCR,GORDON'

ZEROSCR,GORDON'
OUTPTSCR,GORDON'

'LUF_NSCR,GORDON'
C'4978'

4F'0'

(END OF FILE LUENEDX)

F.5.2 Routine CONV

This routine is compiled using the utility routine $SIASM.

The program preparation facility accessed via $SMMAIN is the

easiest method for its execution. The file ASMWK2 on volume
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CONTROL of the harddisk was reserved as the destination file

for the compiled object.

(START OF FILE CONV)

*****

***** INPUT CONVERSION/RECONSTRUCTION ROUTINE
W****

**WW***W**W***WW*W*W***W***W******W***W**WWW.W**WWWW.WWW***

START

EXTRN RETURN

ENTRY CONV

CONV EQU *

FMVC 2(R1,0)*,FR3 :STRAIN1

FM 84(RI,2)*,FR3 :CONV2*STRAINI

FMVC 4(RI,0)*,FR2 :STRAIN2

FM 88(RI,2)*,FR2 :CONV3*STRAIN2

FA FR2,FR3 :MODEl

FMV FR3,116(RI,2)* :SAVE MODEl

FMVC 2(R1,0)*,FR2 :STRAIN1

FM 92(R1,2)*,FR2 :CONV4*STRAINI

FMVC 4(RI,0)*,FRI :STRAIN2

FM 96(RI,2)*,FR1 :CONV5*STRAIN2

FA FRI,FR2 :MODE2

FMV FR2,120(RI,2)* :SAVE MODE2

FMVC (RI,0)*,FRI :THETA

FM 80(RI,2)*,FRI :CONVI*THETA

FMV FRI,II2(RI,2)* :SAVE FTHETA

FMVC 6(RI,0)*,FRI :OMEGA

FM 100(RI,2)*,FR1 :CONV6*OMEGA

FMV FRI,124(RI,2)* :SAVE FOMEGA
ABI 4,RI
B RETURN
END

(END OF FILE CONV)

F.5.3 Routine UPDATE

This routine is compiled using the utility routine $SIASM.

The program preparation facility accessed via SSMMAIN is the

easiest method for its execution. The file ASMWK3 on volume

CONTROL of the harddisk was reserved as the destination file

for the compiled object.
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e

(START OF FILE UPDATE)
**************************.************.*******************

***** UPDATE FOR LUENBERGER OBSERVER
*****

....WWWWWWWWW*WWW*W*W****WW*W******************************

START
EXTRN RETURN

ENTRY UPDATE

UPDATE EQU *
,

** UPDATE ESTIMATE OF MODE ONE VELOCITY

FMV

FM

FMV

FM

FA

FMV

FM

FA

FMV

FM

FA

FA

FMV

I12(R1,2)*,FR3

148(R1,2)*,FR3

II6(R1,2)*,FR1

156(R1,2)*,FR1

FRI,FR3

120(R1,2)*,FRI

164(R1,2)*,FRI

FRI,FR3

124(R1,2)*,FRI

172(R1,2)*,FRI

FR1,FR3

128(RI,2)*,FR3
FR3,128(RI,2)*

:DISPLACEMENT LISTING IN M2SO

:FTHETA

:UPDATE LI*FTHETA

:FMODEI

:UPDATE L3*FMODI

:ADD TO UPDATE Z1

:FMODE2

:UPDATE L5*FMODE2

:ADD TO UPDATE Z1

:FOMEGA

:UPDATE L7*FOMEGA

:ADD TO UPDATE Zl

:ADD EST VEL MODEl
:SAVE UPDATE Z1

** BEGIN UPDATE ESTIMATE OF MODE TWO VELOCITY

:FTHETA
:UPDATE L2*FTHETA

:FMODEI

:UPDATE L4*FMODI

:ADD TO UPDATE Z2

:FMODE2

:UPDATE L6*FMODE2

:ADD TO UPDATE Z2

:FOMEGA

:UPDATE L8*FOMEGA

:ADD TO UPDATE Z2

:ADD EST VEL MODEl

:SAVE UPDATE Z2

FMV II2(RI,2)*,FR3

FM 152(RI,2)*,FR3

FMV II6(RI,2)*,FRI

FM 160(R1,2)*,FR1

FA FRI,FR3

FMV 120(RI,2)*,FR1

FM 168(RI,2)*,FR1

FA FRI,FR3
FMV I_,, 2)* FRI_RI,

FM 176(RI,2)*,FRI

FA FRI,FR3

FA 132(RI,2)*,FR3

FMV FR3,132(RI,2)*

ABI 4,RI

B RETURN

END

F.5.4 Routine CNTRL

This routine is compiled using the utility routine $SlASM.

The program preparation facility accessed via $SMMAIN is the
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easiest method for its execution. The file ASMWK3on volume

CONTROL of the harddisk was reserved as the destination file

for the compiled object.

(START OF FILE CNTRL)

*WWWW

***** CONTROL LAW FOR LUENBERGER/KALMAN FILTER ---
*WWW*

*W*W*W*W***W*WW*W**WWW*WWWWWWW**WW**WW*W***WW*WWWWW**W.W.W.

START

EXTRN RETURN :DISPLACEMENT LISTING IN M2SO
ENTRY CNTRL

CNTRL EQU *

FMV II2(R1,2)*,FR3 :FTHETA

FM 56(RI,2)*,FR3 :KI*FTHETA

FMV I16(RI,2)*,FRI :FMODEI

FM 60(RI,2)*,FRI :K2*FMODI

FA FRI,FR3 :ADD TO CONTROL
FMV 120(RI,2)*,FRI :FMODE2

FM 64(RI,2)*,FRI :K3*FMODE2

FA FRI,FR3 :ADD TO CONTROL
FMV 124(RI,2)*,FRI :FOMEGA

FM 68(RI,2)*,FRI :K4*FOMEGA
FA FRI,FR3 :ADD TO CONTROL

FMV 128(RI,2)*,FRI :EST VEL MODEl

FM 72(RI,2)*,FRI :K5*EST VEL MODEl
FA FR1,FR3 :ADD TO CONTROL

FMV 132(RI,2)*,FRI :EST VEL MODE2

FM 76(RI,2)*,FR1 :K6*EST VEL MODE2
FA FRI,FR3 :ADD TO CONTROL

FMVC 10(RI,0)*,FRI :DESIRED ANGLE

FM 108(RI,2)*,FRI :SCALE ANGLE

FA FRI,FR3 :ADD

FMV FR3,136(RI,2)* :SAVE TORQ
FMVC 12(RI,0)*,FR1 :DITHER SIGNAL

FM 108(RI,2)*,FR1 :SCALE

FA FRI,FR3 :

FM 104(RI,2)*,FR3 :CONVERT TORQ

FMVC FR3,8(RI,0)* :SAVE INTEGER TORQ
ABI 4,RI
B RETURN

END

(END OF FILE CNTRL)

F.5.5 Routine EST

This routine is compiled using the utility routine $SIASM.
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The program preparation facility accessed via $SMMAIN is the

easiest method for its execution. The file ASMWK4on volume

CONTROL of the harddisk was reserved as the destination file

for the compiled object.

(START OF FILE EST)

***** LUENBERGER OBSERVOR FOR MODAL VELOCITIES

EST

START

EXTRN RETURN

ENTRY

EQU
FMV

FM

FMV
FM

FA

FMV

FM
FA

FMV

FM

FA

FMV

FM

FA

FMV

FM

FA

FMV

FM

FA

FMV

FM

FMV

FM

FA

FMV

FM
FA

FMV

FM

FA

FMV

:DISPLACEMENT LISTING IN
LUENEDX

EST

128(R1,2)*,FR3

0(RI,2)*,FR3

132(RI,2)*,FR2
4(R1,2)*,FR2

FR2,FR3

II2(RI,2)*,FR2

8(RI,2)*,FR2
FR2,FR3

II6(RI,2)*,FR2

12(RI,2)*,FR2

FR2,FR3

120(RI,2)*,FR2

16(RI,2)*,FR2

FR2,FR3

124(RI,2)*,FR2

20(RI,2)*,FR2

FR2,FR3

136(RI,2)*,FR2

24(RI,2)*,FR2

FR2,FR3

128(RI,2)*,FR2

28(RI,2)*,FR2

132(RI,2)*,FRI

32(RI,2)*,FRI

FRI,FR2

II2(RI,2)*,FRI

36(RI,2)*,FRI

FRI,FR2
II6(RI,2)*,FRI

40(RI,2)*,FRI

FRI,FR2

120(R1,2)*,FRI

:START EQN1 GET VELMODI
:Fll*VELMODI
:GET*MODE2

:FI2*MODE2

:SUM TERMS FOR EQN 1
:GET FTHETA
:GII*FTHETA

:SUM TERMS FOR EQN 1
:GET MODI

:GI2*MODI

:SUM TERMS FOR EQN 1
:GET MOD2

:GI3*THETA

:SUM TERMS FOR EQN 1
-:GET FOMEGA

:GI4*FOMEGA

:SUM TERMS FOR EQN 1

:GET FTORQ

:BI*TORQ

:COMPLETE EQN 1

:START EQN2 GET VELMODI
:F21*VELMODI

:GET*MODE2

:F22*MODE2

:SUM TERMS FOR EQN 2
:GET FTHETA

:G21*FTHETA

:SUM TERMS FOR EQN 2
:GET MODI

:G22*MODI

:SUM TERMS FOR EQN 2
:GET MOD2
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FM
FA
FMV
FM
FA
FMV
FM
FA
FMV
FMV
ABI
B
END

(END OF FILE EST)

44(RI,2)*,FRI
FR1,FR2
124(RI,2)*,FRI
48(RI,2)*,FRI
FRI,FR2
136(RI,2)*,FRI
52(RI,2)*,FRI
FRI,FR2
FR3,128(RI,2)*
FR2,132(RI,2)*
4,RI
RETURN

:G23*THETA
:SUM TERMSFOR EQN 2
:GET FOMEGA
:G24*FOMEGA
:SUM TERMS FOR EQN 2
:GET FTORQ
:B2*TORQ
:COMPLETEEQN 2
:SAVE EST VEL MODEl
:SAVE EST VEL MODE2
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